
DUT STID, Université de la Côte d’Azur

Bases de données avancées

Gestion de BD

Prof. D. Malchiodi (malchiodi@di.unimi.it)

http://malchiodi.di.unimi.it/teaching/STID-BDA

http://malchiodi.di.unimi.it/teaching/STID-BDA

STID UCA – Bases des données avancées 2

Ouvrages de références

• G. Gardarin, “Base de données”, édition Eyrolles
– La référence en BD

• Andreas Meier, « Introduction pratique aux bases de données
relationnelles », 2ème édition, Collection IRIS
– Exemple complet en Access avec exercices corrigés

• Elmasri & Navathe, « Fundamentals of Database Systems », 4th
edition, International Edition

• Chris J. Date, « Introduction aux Bases de Données », 7e édition,
vuibert informatique
– Livre très complet avec exercices non corrigés

• K. Williams and al., « XML et les bases de données », édition
Eyrolles

• Sur le net
– http://www.hec.unil.ch/gcampono/index.php/teaching/BDA

Rappels de BD

STID UCA – Bases des données avancées 4

BD & SGBD

• BD
– Un ensemble bien structuré de données relatives à un sujet

global contenant le moins de redondances possibles et
accessible par plusieurs utilisateurs simultanément

• SGBD
– Ensemble de programmes permettant à des utilisateurs de

créer et d’utiliser des BDs
– Activités

• Définition d’une BD (spécifications des types de données à
stocker)

• Construction d’une BD (stockage des données proprement dite)
• Manipulation des données (ajouter, supprimer, retrouver des

données …)

STID UCA – Bases des données avancées 5

BD & SGBD

Que doit permettre un SGBD ?
• Décrire les données indépendamment des

applications
– langage de définition des données (DDL)

• Manipuler les données
– interroger et mettre à jour les données
– sans préciser d'algorithme d'accès (dire QUOI sans dire

COMMENT)
– langage de requêtes déclaratif
– ex. : quels sont les noms des produits de prix < 100 Euros ?
– langage de manipulation des données (DML)

STID UCA – Bases des données avancées 6

BD & SGBD

• Contrôler les données
– Intégrité : vérification de contraintes d'intégrité ex.: le salaire

doit être compris entre 1400 Euros et 10000 Euros
– Confidentialité : contrôle des droits d'accès, autorisation
– langage de contrôle des données (DCL)

• Partage
– Une BD peut être partagée entre plusieurs utilisateurs en

même temps
– Nécessité de contrôle des accès concurrents
– Notion de transation
– L’exécution d’une transation doit préserver le cohérence de

la BD.

STID UCA – Bases des données avancées 7

Les différentes instructions SQL

• Langage de Définitions de Données (LDD)
– CREATE TABLE
– CREATE VIEW
– ALTER

• Langage de Manipulation De Données (LMD)
– SELECT OPEN
– INSERT FETCH
– UPDATE CLOSE
– DELETE

• Langage de Contrôle de Données (LCD)
– GRANT et REVOKE
– BEGIN et END TRANSACTION
– COMMIT et ROLLBACK

Administration d’une BD

MySQL

• Même en faisant référence à un type specifique de
DB, il y a plusieurs SGBD disponibles.

• Pour cette première partie, nous allons utiliser MySQL
(version 5.7.25)

Sécurité des accès

• MySQL implémente un système sophistiqué de
contrôle d'accès qui permet de gérer les opérations
des clients et d'empêcher les clients non autorisés
d'accéder au système

• Lorsqu'un client se connecte au serveur:
– Vérification de la connexion : un client qui se connecte au

serveur doit avoir un nom d'utilisateur et un mot de passe
valides, e se connecter d’un hôte valide

– Vérification de la demande : une fois la connexion établie
avec succès, MySQL vérifie, pour chaque instruction émise
par le client, si le client dispose des privilèges suffisants pour
exécuter cette instruction. MySQL peut vérifier un privilège
au niveau de la base de données, de la table et de la
colonne.

Création des usagers

• Un usager est crée par la commande CREATE USER
CREATE USER user@host IDENTIFIED BY password ;

• Les mots de passe sont stockées après cryptage
• L’absence de l’hôte signifie « n’importe quel hôte »
• Les guillemets vont utilisés quand une chaîne

contient des caractères spéciaux (comme % et _)

mysql> CREATE USER momo IDENTIFIED BY ‘Passw0rd.’;
mysql> CREATE USER ‘momo’@’localhost’ IDENTIFIED BY
‘Password’;

Création des usagers

• On peut utiliser les métacaractères % (zero ou plus
caractères) et _ (n’importe quel caractère), en
utilisant des guillemets

• On peut créer plusierus usagers avec un même nom,
mais avec differentes permission en fonction de l’hôte
de connexion

• La création d’une couple usager+host qui existe déjà
déclanche une erreur

• Noms et hôtes doivent être placès séparemment dans
guillemets

• Selon l’installation de mySQL, des politiques de mot
de passe peuvent être mis en place

Création des usagers

mysql> CREATE USER momo@’%’ IDENTIFIED BY ‘Passw0rd.’;
mysql> CREATE USER momo@’%.fr’ IDENTIFIED BY
‘Passw0rd.’;
mysql> CREATE USER ‘momo@localhost’ IDENTIFIED BY
‘Passw0rd.’; # ça marche pas!

Permissions des nouveaux usagers

• La commande SHOW GRANTS visualise les
permissions d’un usager

• Un usager qui vient d’être crée n’a que la permission
USAGE (il peut seulement se connecter)

mysql> CREATE USER momo IDENTIFIED BY ‘Passw0rd.’;
mysql> SHOW GRANTS FOR momo;
+----------------------------------+
| Grants for momo@% |
+----------------------------------+
| GRANT USAGE ON *.* TO `momo`@`%` |
+----------------------------------+

Attention aux métacaractères

• Délimiter une chaîne avec guillemets peut avoir des
mauvaises conséquences

mysql> CREATE USER ‘momo@localhost’ IDENTIFIED BY ‘Passw0rd.’;
mysql> SHOW GRANTS FOR ‘momo@localhost’;
+---+
| Grants for momo@localhost@% |
+---+
| GRANT USAGE ON *.* TO `momo@localhost`@`%` |
+---+

Sécurité des accès

• La base mysql, automatiquement crée, contient les
permissions des usager, organisés dans les tables
– user (comptes d’utilisateurs / permission à niveau global)
– db (permissions à niveau de base des données)
– table_priv et columns_priv (permissions à niveau de table et

de colonnes)
– procs_priv (fonctions d’agrégation / procédures stockées)

• Seul le usager root devrait avoir accès à cette base !

La table «user»

mysql> USE mysql;
mysql> DESCRIBE user;
+------------------------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+----------------------+------+-----+---------+-------+
Host	char(60)	NO	PRI		
User	char(32)	NO	PRI		
Select_priv	enum('N','Y')	NO		N	
Insert_priv	enum('N','Y')	NO		N	
...
authentication_string	text	YES		NULL	
password_expired	enum('N','Y')	NO		N	
password_last_changed	timestamp	YES		NULL	
password_lifetime	smallint(5) unsigned	YES		NULL	
account_locked	enum('N','Y')	NO		N	
+------------------------+----------------------+------+-----+------+----------+

STID UCA – Bases des données avancées 18

Grant & Revoke

• Permissions
– Permet de définir des droits d’accès, de modification, de

suppression… pour chaque utilisateur
– Les permissions peuvent être definies aussi en fonction de

l’hôte duquel l’utilisateur est connecté
– Tâche effectuée par l’administrateur de la BD

• GRANT permet d'accorder des droits à un utilisateur
(parfois plusieurs sur certains SGBD)

• REVOKE permet de retirer des droits à un utilisateur (ou
plusieurs sur certains SGBD)

STID UCA – Bases des données avancées 19

Les permissions MySQL

mysql> SHOW PRIVILEGES

• SELECT : droit d’effectuer des recherches avec «select»
• INSERT : droit d’effectuer des insertions avec «insert»
• UPDATE : droit d’effectuer des mises à jour avec «update»
• DELETE : droit d’effectuer des destructions d’enregistrement

dans des tables
• INDEX : droit de créer ou de détruire des index de table
• ALTER : droit de modifier la structure des tables avec «alter»
• CREATE : droit de créer des bases ou des tables avec «create»
• USAGE : droit de se connecter au serveur, sans rien faire

d’autre (utile pour changer le mot de passe de connextion)
• LOCK : droit de verrouiller / déverrouiller des tables

STID UCA – Bases des données avancées 20

Les permissions MySQL

• DROP : droit de détruire des tables ou des bases
• GRANT : permet d’affecter droits et permissions à un

utilisateur
• REFERENCES : droit lié aux «foreign keys»

Privilèges globaux, ne s’appliquent pas à une base particulière
• RELOAD : permission de relancer le serveur mysql et d’écrire

les tables sur disque
• SHUTDOWN : droit d’arrêter le serveur mysql
• FILE : droit d’écrire ou lire dans des fichier ASCII avec les

commandes «load data» et «into outfile»

STID UCA – Bases des données avancées 21

SHOW

• SHOW peut être utilisé pour énumérer aussi autres
objets :
– SHOW DATABASES
– SHOW TABLES

STID UCA – Bases des données avancées 22

Allouer des permissions: GRANT

• Les permissions de table se manipulent avec les commandes
SQL GRANT et REVOKE

• GRANT permet de créer un utilisateur, lui allouer des droits et
changer son mot de passe

GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ON
{tbl_name | * | *.* | db_name.*} TO user [IDENTIFIED BY
[PASSWORD] 'password']
mysql> GRANT all ON test.* TO momo IDENTIFIED BY ‘Passw0rd.’;
mysql> GRANT select, insert ON mysql.* TO momo@localhost
IDENTIFIED BY ‘Passw0rd.’;
• Les privilèges «file», «reload» et «shutdown» sont globaux

pour tout le serveur et non pas pour une base particulière
mysql> GRANT file ON *.* TO momo@localhost;

STID UCA – Bases des données avancées 23

Affichage des droits d’accès

• Les exemples précédents insèrent le user «momo»
avec son mot de passe, et la machine autorisée, dans
la table «user» de la base mysql, avec les droits
globaux.

mysql> SELECT * FROM user WHERE user=’momo’;
| localhost | momo | N | N | N | N | N | N | N
| N | N | Y | N | N | N | N | N | N | N | N | N
| N | N | N | N | N | N | N | N | N | N | |
| | | 0 | 0 | 0 | 0 | mysql_native_password |
*BE08431E1615FDE206B80F0192AE599DDB88D061
| N | 2019-01-27 23:28:12 | NULL | N |

STID UCA – Bases des données avancées 24

Affichage des droits d’accès

• Les droits de l’usager relatif aux bases sont placés
dans la table «db» de la base mysql

mysql> SELECT * FROM db WHERE user=’momo’;
| % | test | momo | Y | Y | Y | Y | Y | Y |
N | Y | Y
| Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| localhost | mysql | momo | Y | Y | N | N | N | N |
N | N | N
| N | N | N | N | N | N | N | N | N | N |

STID UCA – Bases des données avancées 25

Affichage des droits d’accès

mysql> show grants for momo;
+--+
| Grants for momo@% |
+--+
| GRANT USAGE ON *.* TO 'momo'@'%' |
| GRANT ALL PRIVILEGES ON `test`.* TO 'momo'@'%' |
+--+
mysql> show grants for momo@localhost;
+---+
| Grants for momo@localhost |
+---+
| GRANT FILE ON *.* TO 'momo'@'localhost' |
| GRANT SELECT, INSERT ON `mysql`.* TO 'momo'@'localhost' |
+---+

STID UCA – Bases des données avancées 26

Attribution de permissions

• GRANT liste_permissions ON liste_objets TO
liste_utilisateurs [WITH GRANT OPTIONS]
– WITH GRANT OPTION permet de définir si l'utilisateur peut lui-

même accorder à un autre utilisateur les permissions qu'on
lui accorde sur les éléments

• Authorisation collective
– PUBLIC en lieu et place de la liste d'utilisateurs permet

d'accorder les privilèges sur le ou les objets à l'ensemble des
utilisateurs

– Le mot clé ALL en lieu et place de la liste de permissions
permet d'accorder tous les privilèges aux utilisateurs
présents dans la liste

STID UCA – Bases des données avancées 27

Grant

• Exemple

mysql> GRANT UPDATE ON etudiants
TO Jerome, Francoise, Georges
WITH GRANT OPTION;

– L’option WITH GRANT OPTION authorise donc plusieurs
utilisateurs à accorder des permissions à un même utilisateur

– Il y a donc des règles à respecter lors du retrait de
permissions à un utilisateur

STID UCA – Bases des données avancées 28

Usages de GRANT

• Allouer des privilèges sur une base

mysql> GRANT select ON Ecole.* TO momo@localhost;

• Allouer des privilèges sur une table

mysql> GRANT update ON Ecole.Etudiants TO momo@localhost;

• Allouer des privilèges sur une colonne

mysql> GRANT insert (nom, prenom) ON Ecole.Etudiants TO
momo@localhost;

STID UCA – Bases des données avancées 29

Usages de GRANT

• Chaque exécution de GRANT modifie des éventuelles
permission déjà alloués

• L’option REQUIRE permet d’allouer une permission
seulement au cas où l’usager utilise une spécifique
connexion sécurisée

mysql> GRANT select ON Ecole.* TO momo@localhost
REQUIRE ssl;

STID UCA – Bases des données avancées 30

Usages de GRANT

• Changer le mot de passe d’un utilisateur

mysql> GRANT USAGE TO momo@localhost IDENTIFIED BY
‘Passw0rd’;

• Créer un super-utilisateur (~root)

mysql> GRANT ALL PRIVILEGES ON *.* TO momo@localhost
IDENTIFIED BY ‘Passw0rd’ WITH GRANT OPTION;

• NB : ne pas créer (trop de) super-utilisateurs !

STID UCA – Bases des données avancées 31

Roles

• Les nouvelles versions de MySQL (mais pas celle que
nous utilisons) implementent le concept de « rôle »

• Un rôle corresponds à un usager abstrait
(développeur, testeur, ...) et est defini en termes des
privilèges correspondants

• Les rôles sont attribués aux usagers effectifs
• Ça rend plus facile la gestion les usagers

STID UCA – Bases des données avancées 32

Ôter des permissions: REVOKE

• REVOKE permet de supprimer des droits pour des
utilisateurs

REVOKE priv_type [column_list] [, priv_type [column_list]] ON
{ tbl_name | * | *.* | db_name.* } FROM user [, user]

mysql> REVOKE ALL ON *.* FROM momo;
mysql> REVOKE alter, delete, drop ON mysql.* FROM momo;
mysql> REVOKE GRANT OPTION on mysql.* FROM
momo@localhost;
mysql> REVOKE select ON mysql.* FROM
‘momo’@’pcml.dom.fr’

STID UCA – Bases des données avancées 33

REVOKE

• Lorsque on retire un droit D à un utilisateur U, il faut
que ce droit soit rétiré aux utilisateurs auquels U a
accordé D

• Un utilisateur peut avoir reçu un droit de plusieurs
utilisateurs

• Il s’agit donc de retirer les droits des utilisateurs
l’ayant obtenu de quelqu’un qui ne l’a plus, en
sachant qu’il peut l’avoir de plusierus personnes
simultanément...

• La clause REVOKE étant implémentée différemment
selon le SGBD, il s’agit de consulter la documentation

STID UCA – Bases des données avancées 34

Enlever un utilisateur

• À partir de la version 4.1.1 de mySQL il faut enlever
tous les privilèges avant de détruire un utilisateur

mysql> SHOW GRANTS FOR momo@localhost;
mysql> REVOKE ALL PRIVILEGES FROM momo@localhost;
mysql> DROP USER momo;

• L’enlevement d’un usager qui n’existe pas déclenche
une erreur, sauf si l’option IF EXISTS ait été spécifiée

STID UCA – Bases des données avancées 35

Enlever un utilisateur

• Pour les versions antérieures à 4.1.1 il faut agir
directement sur la table mysql.user

• Chaque modification via mysql.user requiert de
récharger les permissions en mémoire

mysql> DELETE FROM mysql.user WHERE user=’momo’ AND
host=’localhost’;
mysql> FLUSH PRIVILEGES;

STID UCA – Bases des données avancées 36

FLUSH PRIVILEGES

• La commande FLUSH PRIVILEGES récharge en
memoire la table des privilèges

• Il est théoriquement possible ajouter des usager ou
changer/ôter leurs permissions en exécutant des
query sur les tables de la base mysql...

• ...mais ça a un coût plus haut en termes de temps
d’execution

STID UCA – Bases des données avancées 37

Changer le mot de passe

• Via GRANT (déprécié)
mysql> GRANT usage TO momo IDENTIFIED BY ‘Passw0rd.’;

• Via UPDATE (requiert aussi FLUSH PRIVILEGES)
mysql> UPDATE user SET
authentication_string=PASSWORD(‘Passw0rd.’) WHERE
user=’momo’ AND host=’localhost’;

• Via ALTER USER
mysql> ALTER USER momo IDENTIFIED BY ‘Passw0rd.’;

• Via SET PASSWORD
mysql> SET PASSWORD for momo=’Passw0rd.’;

STID UCA – Bases des données avancées 38

Création d’une base

• Via la commande CREATE DATABASE (ou CREATE
SCHEMA)

mysql> CREATE DATABASE Ecole;

• L’option IF NOT EXISTS évite l’eventuel erreur qui
aurait lieu au cas où la base n’existait pas

mysql> CREATE DATABASE IF NOT EXISTS Ecole;

• USE permet de selectionner et utiliser une base
mysql> USE Ecole;

STID UCA – Bases des données avancées 39

Création d’une table

• Via CREATE TABLE

CREATE TABLE Nom_de_la_table (Nom_de_colonne1
Type_de_donnée, Nom_de_colonne2 Type_de_donnée, ...);

• On peut utiliser l’option IF NOT EXISTS

STID UCA – Bases des données avancées 40

Types de données

Type de donnée Syntaxe Description

Alphanumérique CHAR(n) Chaine de longeur fixe n<16383

Alphanumérique VARCHAR(n) Chaîne de longeur maximale n<16383

Numérique NUMBER(n[, d]) Nombre (n chiffres, d après virgule)

Numérique SMALLINT Entier signé (16 bit)

Numérique INTEGER Entier signé (32 bits)

Numérique FLOAT Nombre à virgule flottante

Horaire DATE Date (JJ/MM/AA)

Horaire TIME Heure (HH:MM:SS.CC)

Horaire TIMESTAMP Date et heure

Texte TEXT Chaîne de longeur maximale < 65535

Blob BLOB Objet binaire

...

STID UCA – Bases des données avancées 41

Contraintes d’integrité

• Clauses permettant de contraindre la modification
des tables, afin que les données dans la base soient
conformes à règles attendues

• Doivent être exprimés dans la création grâce à mots
clé :
– DEFAULT
– NOT NULL : champ obligatoire
– UNIQUE : chaque valeur doit être différent
– CHECK

STID UCA – Bases des données avancées 42

Default

• Valeur par défaut
– Utiliser le mot clé DEFAULT <valeur>
– Garantit que le champ n’est pas vide
– Valeur :

• constante numérique
• constante alphanumérique (chaîne de caractères)
• le mot clé USER (nom de l'utilisateur)
• le mot clé NULL
• le mot clé CURRENT_DATE (date de saisie)
• le mot clé CURRENT_TIME (heure de saisie)
• le mot clé CURRENT_TIMESTAMP (date et heure de saisie)

STID UCA – Bases des données avancées 43

Contraintes

• Condition sur une colonne
– Utiliser le mot clé CHECK(<condition logique>)
– Si le valeur inséré est différent de NULL, le SGBD contrôle la

condition et refuse de modifier la table si elle n’est pas
satisfaite

– La condition peut contenir des ordres SELECT
• Nommer une contrainte

– Utiliser le mot clé CONSTRAINT <nom contrainte>
– Lorsque une contrainte n’est pas respectée, le SGBD affiche

son nom
– Des noms (incomprehensibles) sont donnés par defaut aux

contraintes par le SGBD

STID UCA – Bases des données avancées 44

Contraintes

mysql> CREATE TABLE Clients(
 id INTEGER UNIQUE NOT NULL,
 nom CHAR(30) NOT NULL,
 prenom CHAR(30) NOT NULL,
 age INTEGER CONSTRAINT valid_age CHECK (age < 100),
 email CHAR(50) NOT NULL CHECK(email LIKE ‘@%@’)
);

STID UCA – Bases des données avancées 45

Contraintes

mysql> CREATE TABLE Clients(
 id INTEGER UNIQUE NOT NULL,
 nom CHAR(30) NOT NULL,
 prenom CHAR(30) NOT NULL,
 age INTEGER,
 email CHAR(50) NOT NULL,
 CHECK(age < 100 AND email LIKE ‘@%@’)
);

STID UCA – Bases des données avancées 46

Clés

• Clés primaires
– PRIMARY KEY (colonne1, colonne2, ...)
– Signifie que les valeurs ne peuvent pas être nulles et que

deux lignes ne peuvent pas avoir simultanément la même
valeur

• Clés étrangères
– FOREIGN KEY (colonne1, colonne2, ...)
– REFERENCES Nom_table_étrangère (colonne1, colonne2, ...)

STID UCA – Bases des données avancées 47

Contraintes

mysql> CREATE TABLE Clients(
 id INTEGER UNIQUE NOT NULL,
 nom CHAR(30) NOT NULL,
 prenom CHAR(30) NOT NULL,
 age INTEGER,
 email CHAR(50) NOT NULL,
 CHECK(age < 100 AND email LIKE ‘@%@’)
 PRIMARY KEY(id)
);

STID UCA – Bases des données avancées 48

Vues

• Ce sont des tables virtuelles, dont les données ne
sont pas stockés dans une table de la BD, et dans
lesquelles il est possible de rassembler des
informations provenant de plusieurs tables

• On parle de «vue» car il s’agit d’une représentations
des données dans le but d’une exploitation visuelle

• Les données présentes dans une vue sont définies
grâce à une clause SELECT

mysql> CREATE VIEW Gros_buveurs AS
 SELECT NB, Nom, Prenom FROM Buveurs, Abus
 WHERE Buveurs.NB=Abus.NB AND Abus.quantite>100;

STID UCA – Bases des données avancées 49

Vues

• Intérêts d’une vue
– Une vue représente une sorte d’intermédiaire entre la base

des données et l’utilisateur
– Une selection de données à afficher
– Une restriction à l’accès aux tables pour l’utilisateur, c’est-a-

dire une sécurité accrue des données
– Un regroupement d’informations au sein d’une entité

STID UCA – Bases des données avancées 50

Index

• C’est un objec complémentaire à la BD «indexant»
certaines colonnes d’une table dans le but de reduire
le temps d’acces aux données

• Index mis à jour à chaque modification de table
• C’est coûteux en termes de memoire
• Peut alourdir le temps de traitement d’un SGBD lors

de la sasie des données
• Donc, la création d’un index doit être justifiée, et les

colonnes sur lesquelles il porte doivent être
judicieusement choisies

• Certains SGBD créent automatiquement un index
lorsq’une clé primaire est définie

STID UCA – Bases des données avancées 51

Création d’index

• La création d’un index se fait grâce à la clause INDEX
précédée de la clause CREATE

• Elle permet de définir un index designé par son nom,
portant sur certaines colonnes d’une table

• CREATE [UNIQUE] INDEX nom_index ON nom_table
(nom_colonne [ASC|DESC], ...)

• L’option UNIQUE permet de définir la présence ou non
des doublons pour les valeurs de la colonne

• Les options ASC/DESC permettent de définir un ordre
de classement des valeurs présents dans la colonne

STID UCA – Bases des données avancées 52

Suppression d’éléments: DROP

• Vue : DROP VIEW nom_vue
• Index : DROP INDEX nom_index
• Table (structure + données): DROP TABLE nom_table
• Table (données) : TRUNCATE TABLE nom_table
• Colonne : ALTER TABLE nom_table DROP

nom_colonne
– Si la colonne ne fait pas part d’une vue,
– ni d’un index,
– ni elle fait part d’une contrainte d’integrité

• Base : DROP DATABASE

STID UCA – Bases des données avancées 53

Modifier la structure d’une table

• En ajoutant une colonne (donc modifiant le schéma
de la relation)

mysql> ALTER TABLE Ecole ADD (age INTEGER);

• En ajoutant une contrainte d’integrité
mysql> ALTER TABLE Ecole ADD CONSTRAINT valid_age
CHECK (age < 100);

• En ajoutant une clé primaire ou étrangère

mysql> ALTER TABLE Ecole ADD PRIMARY KEY (id)

STID UCA – Bases des données avancées 54

Modifier la structure d’une table

• Modifier une colonne

mysql> ALTER TABLE Ecole MODIFY age SMALLINT;

• Rénommer une table

mysql> RENAME Ecole AS Etudiants;

STID UCA – Bases des données avancées 55

TD

• Création d’une base
• Création d’un usager administratif pour la base
• Création de tables avec contraintes et clés
• Création d’usagers avec differents privilèges
• Sasie des données
• Modification de la structure des tables
• Creation d’un index
• Modification des privilèges et du mot de passe
• Enlèvement de privilèges à un usager

STID UCA – Bases des données avancées 56

TP

• Installation logiciel (MAMP)
• Création d’une base
• Création d’un usager administratif pour la base
• Création de tables avec contraintes et clés
• Création d’usagers avec differents privilèges
• Sasie des données
• Modification de la structure des tables
• Creation d’un index
• Modification des privilèges et du mot de passe
• Enlèvement de privilèges à un usager

STID UCA – Bases des données avancées 57

TP : Mettre des droits sur la Base
 Créer une base BASE et créer plusieurs utilisateurs. Affecter des

droits différents à ces utilisateurs :

utilisateur qui aura tous les droits sur BASE

 Un utilisateur qui n'aura que le droit de sélectionner

 Un utilisateur qui aura le droit insert et update dans les

tables de BASE

 Un

 Modifier la password de l’un des utilisateurs

 Enlever le droit de update à un utilisateur qui l’a

STID UCA – Bases des données avancées 58

Les jointures

• Quand on précise plusieures tables dans une clause
FROM, on obtient leur produit cartesien

• Ce produit offre en général peu d’intérêt
• Il est bien plus intéressant de joindre les informations

des diverses tables, recollant les lignes suivant les
valeurs qu’elles ont dans certaines colonnes

STID UCA – Bases des données avancées 59

Une jointure simple

Employé Projet

Marc Vert A

Julie Blanc A

Cédric Bleu B

Identifiant Nom projet

A Pages Web

B SGBD

Employes Projets

Employé Projet Identifiant Nom projet

Marc Vert A A Pages Web

Julie Blanc A A Pages Web

Cédric Bleu B B SGBD

Employes ⋈ Projet=Identifiant Projets

STID UCA – Bases des données avancées 60

Jointure incomplète

Identifiant Nom projet

A Pages Web

B SGBD

C Résau

Projets

Employé Projet Identifiant Nom projet

Marc Vert A A Pages Web

Julie Blanc A A Pages Web

Cédric Bleu B B SGBD

Employes ⋈ Projet=Identifiant Projets

• Certaines valeurs parmi les attributs commun ne
coïncident pas

• Les n-uplets correspondants ne participent pas à
former la relation jointe (dangling tuples)

STID UCA – Bases des données avancées 61

Jointure incomplète

Identifiant Nom projet

X Pages Web

Y SGBD

Z Résau

Projets Employes ⋈ Projet=Identifiant Projets

• Certaines valeurs parmi les attributs commun ne
coïncident pas

• Les n-uplets correspondants ne participent pas à
former la relation jointe (dangling tuples)

Employé Projet Identifiant Nom projet

STID UCA – Bases des données avancées 62

Jointures

• Tables Emp(nome, dept) et Dept(nomd, dept)
• SELECT nome, nomd FROM Emp JOIN Dept ON

Emp.dept=Dept.dept;
• La clause FROM indique de ne conserver dans le

produit cartesien que les éléments pour lesquels le
département est le même dans les deux tables

• On obtient donc une jointure entre les tables d’après
le département

• Par opposition aux jointures extérnes que on va
bientôt étudier, on peut ajouter le mot clé INNER

• SELECT nome, nomd FROM Emp INNER JOIN Dept ON
Emp.dept=Dept.dept;

STID UCA – Bases des données avancées 63

Les Jointures

STID UCA – Bases des données avancées 64

Les Jointures

• Jointure Naturelle

– Avantage : évite de préciser le(s) attributs de jointures (le
nom doit être identique !)

– On peut préciser les attributs dans la clause using

• Jointure Interne (Par défaut)

– Le mot clé INNER est facultatif
– Principe : fait correspondre 1 et 1 seul client à 1 et 1 seul

Num_Tel

STID UCA – Bases des données avancées 65

Les Jointures

• Problème : quel est la requête SQL qui permet
– TOUS les clients avec leur Num_Tel s’ils en ont 1
– TOUS les Num_Tel et les clients correspondant s’ils sont encore connus

dans la BD …
• Jointures Externes

– LEFT OUTER JOIN
• recherche toutes les valeurs satisfaisant la condition de jointure, puis on

rajoute toutes les lignes de la table Gauche qui n'ont pas été prises en compte
– RIGHT OUTER JOIN

• recherche toutes les valeurs satisfaisant la condition de jointure, puis on
rajoute toutes les lignes de la table Droite qui n'ont pas été prises en compte

– FULL OUTER JOIN
• recherche toutes les valeurs satisfaisant la condition de jointure, puis on

rajoute toutes les lignes de la table Gauche et Droite qui n'ont pas été prises
en compte

STID UCA – Bases des données avancées 66

Les Jointures

• Jointure Externe • Jointure Interne

STID UCA – Bases des données avancées 67

Les Jointures

• Jointure Croisée
– Produit cartésien entre 2 tables

• Jointure d’Union
– Fait l’union structurelle de 2 tables qui n’ont pas forcément

quelque chose en commun

STID UCA – Bases des données avancées 68

Domaines

• Soit la table Cours(NumC, Semestre, Nbr_inscrits)
• On veut que l’attribut semestre soit de la forme

‘SEM1_ _’ ou ‘SEM2_ _’ par exemple, le premier
semestre de 2001 sera saisi ‘SEM101’

• Instructions SQL
CREATE DOMAIN SEM CHECK ((VALUE LIKE ‘SEM1_ _’) OR

 (VALUE LIKE ‘SEM2_ _’))

CREATE TABLE Cours(
NumC Integer,
Semestre SEM,
Nbr_inscrits Integer)

STID UCA – Bases des données avancées 69

Les assertions(1)

• Les assertions sont des contraintes qui peuvent porter
sur plusieurs tables

• Elles doivent être vérifiées par le SGBD à chaque fois
qu’une des tables mentionnées est modifiée

• CREATE ASSERTION <nom> CHECK (<condition>)

• La condition doit être vraie lors de la création, sinon
l’assertion n’est pas créée

STID UCA – Bases des données avancées 70

Les assertions(2)

• Cours(NumC, Sem, Nb_inscrits)
Inscription(NumEt, NumC, Sem)

• On veut que Nb_inscrits reflète exactement le nombre
d’inscrits

CREATE ASSERTION NB_INSCR CHECK(
NOT EXISTS(select * from Cours C

 where C.Nb_inscrits <> (select COUNT(*)
 FROM Inscription i
 WHERE i.NumC=C.NumC AND i.Sem=C.Sem

 GROUP BY (i.NumC, i.Sem))
));
SET ASSERTION NB_INSCR DEFERRED;

• Il n’y pas beaucoup de SGBD qui utilisent les assertions

STID UCA – Bases des données avancées 71

Les Triggers

• Assertions
– Les assertions décrivent des contraintes qui doivent être

satisfaites par la BD à tout moment.
– Une assertion est vérifiée par le SGBD à chaque fois qu’une

des tables qu’elle mentionne est modifiée
– Si une assertion est violée, alors la modification est rejetée

• Triggers
– Les triggers spécifient explicitement à quel moment doivent-

ils être vérifiés (i.e. insert, delete, update)
– Les triggers sont des règles ECA : Evénement, Condition,

Action
– Quand E a lieu, si C est vérifiée alors A est exécutée

STID UCA – Bases des données avancées 72

Triggers – activation

• Un trigger peut être activé BEFORE/AFTER/INSTEAD OF
un événement d’activation qui peut être une des
commandes insert/delete/update dans une ou plusieurs
tables

• L’action peut faire référence à l’ancienne et/ou à la
nouvelle valeur des tuples insérés/supprimés/modifiés
par l’action
CREATE TRIGGER exemple1
AFTER UPDATE OF solde ON compte

• La condition est exprimée par la clause WHEN
WHEN (solde < 0)

• La clause WHEN peut être n’importe quelle condition
booléenne

STID UCA – Bases des données avancées 73

Trigger - Action

• Le concepteur a le choix entre spécifier l’action à
exécuter soit
– Une fois, pour chaque tuple modifié/inséré/supprimé, ou
– Une fois pour tous les tuples modifiés lors d’une seule

opération
FOR EACH ROW
UPDATE compte

SET date_débit = SYSDATE
WHERE Compte.IdC = OldTuple.IdC

• L’action peut être n’importe quelle code écrit dans le
langage associé du SGBD (E.g sous Oracle, c’est
PL/SQL, Java, C ; pour H2 c’est Java)

STID UCA – Bases des données avancées 74

Triggers - row level

• Les insertions créent de nouveaux tuples
– On ne peut faire référence à l’ancienne valeur

• Les modifications font passer de “old” à “new”
– On peut faire référence à ces deux valeurs

• Avec les suppressions, on ne peut faire référence aux
nouvelles valeurs.

• Les nouvelles/anciennes valeurs ne peuvent être
accédées qu’en mode ligne (Row level).

STID UCA – Bases des données avancées 75

Exemple

CREATE TRIGGER Trig_Inscrits
After INSERT ON INSCRPTION
FOR EACH ROW //pour chaque nouvel inscrit
BEGIN

Update Cours SET Nb_Inscrits=Nb_Inscrits+1
where Cours.Sem=new.Sem AND
Cours.NumC=new.Numc;

END;

STID UCA – Bases des données avancées 76

Exemple

• On veut garder la trace des opérations effectuées par
les utilisateurs
CREATE TRIGGER TRIG_INSC

AFTER INSERT ON Inscrits

BEGIN

Insert into tab_logs(Utilisateur, operation, heure) values
(USER, ‘insertion’, SYSDATE);

 END;

STID UCA – Bases des données avancées 77

Triggers: Activation

• Activation
– BEFORE – la condition WHEN est testée sur l’état avant

l’arrivée de l’événement déclencheur
• Si la condition est vraie, l’action est exécutée, ensuite
• L’événement déclencheur est réalisé

– INSTEAD OF – l’action est exécutée si la condition est vérifiée,
• L’événement déclencheur n’est jamais effectué.

– AFTER – l’action est exécutée si la condition WHEN est
vérifiée après la réalisation de l’événement déclencheur.

STID UCA – Bases des données avancées 78

Exemples

CREATE TRIGGER compter
BEFORE INSERT ON Emp
DECLARE nombre number;
BEGIN

nombre := select COUNT(*) from EMP;
dbms_output.put(‘On passera de' || :nombre);
dbms_output.put(‘a ' || :nombre+1);

END;

STID UCA – Bases des données avancées 79

Exemples

CREATE TRIGGER compte
AFTER INSERT ON Emp
DECLARE nombre number;
BEGIN

nombre := select COUNT(*) from EMP;
dbms_output.put(‘On est passé de'|| :nombre-1);
dbms_output.put(‘a ' || :nombre);

END;

STID UCA – Bases des données avancées 80

Exemples

CREATE TRIGGER compte
AFTER INSERT ON Emp
WHEN ((select COUNT(*) from EMP)=101)
BEGIN

dbms_output.put(‘On vient de passer le cap’);
dbms_output.put(‘de 100 employés’);

END;

STID UCA – Bases des données avancées 81

Exemple

• Emp(Nom, Salaire)
– Le salaire d’un employé ne peut baisser
– Cette contrainte ne peut être prise en compte qu’en utilisant

les triggers ou bien les procédure stockées

Create procedure mod_sal(in nomE, in salE)
 a:=select Salaire from Emp where Nom=:nomE;
 si Salaire < salE alors

update Emp set Salaire = :salE where
 Nom= :nomE;

STID UCA – Bases des données avancées 82

Exemple

CREATE TRIGGER Mod_Sal
AFTER UPDATE OF Emp ON Salaire
FOR EACH ROW
BEGIN

If new.Salaire < old.Salaire Rollback;
END;

STID UCA – Bases des données avancées 83

Conception des triggers

• Ne pas utiliser les triggers pour gérer des contraintes
qui sont facilement gérables par le système.
Exemple : prise en compte des contraintes d’unicité
de clé.

• Limiter la taille des triggers. S’il vous faut plus de 60
lignes, il est préférable de définir une procédure
stockée et l’appeler par le trigger.

• Utiliser les triggers pour les opérations qui ne
dépendent pas de l’utilisateur ni de l’application

• Eviter les triggers récursifs. E.g, un trigger
déclenché lors d’une modification de la table employé
et dont l’action va elle aussi modifier cette table

STID UCA – Bases des données avancées 84

Fonction agrégate / procédure
stockée

• Permet de définir une fonction utilisée dans les
requêtes SQL

• Avec H2
– Créer la procédure stockée “isPrime” en Java et l’enregistrer

dans un fichier (Function2.java par exemple)
– L’enregistrer ds le même répertoire que h2.jar (C:\Program

Files\H2\bin)
– Ouvrir une invite de commande
– Se placer dans le répertoire où se trouve h2.jar
– Compiler

• javac –cp “h2.jar” Function2.java
– Lancer H2 par la ligne de commande

• java -cp "h2.jar;%H2DRIVERS%;%CLASSPATH%;./"
org.h2.tools.Console

– Créer un lien avec la méthode contenue dans la classe
• CREATE ALIAS IS_PRIME FOR "Function2.isPrime"

STID UCA – Bases des données avancées 85

STID UCA – Bases des données avancées 86

Optimisation

• Optimisation
– De modélisation
– De requêtes

STID UCA – Bases des données avancées 87

Optimisation de modélisation

• Ce qui fait gagner du temps
– Normalisez vos données, entités et relations
– Standardisez le format et le type de vos colonnes
– Utiliser des clefs composée d'une colonne unique d'un type 32

bits et purement informatique (un entier c'est parfait)
– Évitez les colonnes nullables surtout si elle doivent être calculées
– Préférez les types fixe (CHAR au lieu de VARCHAR) pour les

colonnes fréquemment sollicitées en recherche et jointure
– Utilisez des modèles performants pour vos relations complexes

(héritage, arbres....)
– Indexez l'essentiel, pas le superflu
– Ajoutez une table des dates plutôt que d'utiliser des fonctions de

calcul temporel
– Dénormalisez vos relations lorsque tout le reste à échoué !

STID UCA – Bases des données avancées 88

Optimisation de requêtes

• SQL : Langage déclaratif
– n’indique ni les algorithmes à appliquer, ni les chemins

d’accès aux données
– Le SGBD fait un choix et les combine de manière à

obtenir les meilleurs performances
– L’optimiseur de requêtes joue un rôle extrêmement

important

• Impossible de trouver en un temps raisonnable
l’algorithme optimal pour exécuter une requête
donnée

STID UCA – Bases des données avancées 89

Optimisation de requêtes

• Objectif
– optimiser, mais éviter de consacrer des ressources

considérables à l’optimisation

• Démarche
– comprendre les mécanismes d’exécution et

d’optimisation pour distinguer les goulets
d’étranglements

• Stratégies
– Plans d’exécution : SQL  opérations sur tables
– Algorithmes d’évaluation
– Utilisations d’index qui conditionnent les temps de

réponse

STID UCA – Bases des données avancées 90

Optimisation de requêtes

Analyseur

Traducteur

Optimiseur

Exécuteur

BD

Dictionnaire

Analyse syntaxique
Analyse sémantique

Traduction des requêtes

Ordonnancement
Optimisation
Elaboration du plan

Exécution du plan
Méthodes d’accès

• Étapes du traitement

STID UCA – Bases des données avancées 91

Optimisation de requêtes

• Paramètres utilisés
– Schéma de la BD

• schémas des tables et des chemins d'accès
– Statistiques

• taille des tables, des index, distribution des valeurs
– Caractéristiques des algorithmes mis en œuvre

• Optimisation statique vs dynamique
– Statique

• décomposition et optimisation n'ont lieu qu'une seule fois
• sans tenir compte des modifications intervenues dans la BD

– Dynamique
• recherche de la meilleure stratégie à chaque exécution de la requête
• au dépend des performances

– Hybride
• Mise à jour de l'optimisation si les statistiques indiquent des

changements importants

STID UCA – Bases des données avancées 92

Optimisation de requêtes

• Mesure du coût
– Critère d’estimation : Nombre de lectures/écritures de pages

sur disque
– Amener en mémoire centrale des enregistrements coûte

beaucoup plus cher que de les traiter en mémoire
– Coût d’écriture du résultat d’une opération sur disque non

pris en compte
• indépendant de l’algorithme
• résultats intermédiaires pas nécessairement réécrits sur disque

– Paramètres pour l’estimation du coût d’une opération
• Nombre de pages en mémoire destinées à contenir les entrées

d’une opération et les résultats intermédiaires
• Nombre de pages sur disque occupées par une relation en entrée

d’une opération
• Nombre d’enregistrements d’une table

STID UCA – Bases des données avancées 93

Optimisation de requêtes

• Optimisation algébrique

STID UCA – Bases des données avancées 94

Optimisation de requêtes

• Optimisation physique
– Recherche d'un plan d'exécution physique combinant des

opérateurs physiques (chemins d’accès et traitements de données)
– Dépend de

• des chemins d'accès qui restreignent le choix d'opérations physiques
pour une opération logique donnée

• des statistiques
• du nombre de pages en mémoire centrale

– SQL : instruction "Explain Plan"
• Algébrique/Physique

– Une opération algébrique peut donner plusieurs opérations
physiques

• Exemple : jointure par boucles imbriquées
– Plusieurs opérations algébriques peuvent être implantées par une

seule opération physique
• Exemple : sélection et projection peuvent être réalisées par un seul

parcours séquentiel

STID UCA – Bases des données avancées 95

Optimisation de requêtes
http://sqlpro.developpez.com/cours/optimiser/

N
°ÉVITEZ PRÉFÉREZ

1
évitez d'employer l'étoile dans la

clause SELECT...

SELECT * FROM T_CLIENT

...préférez nommer les colonnes une à
une

SELECT CLI_ID, TIT_CODE, CLI_NOM, CLI_PRENOM, CLI_ENSEIGNE
FROM T_CLIENT

2
évitez d'employer DISTINCT dans la

clause SELECT...

SELECT DISTINCT CHB_NUMERO, CHB_ETAGE FROM T_CHAMBRE

...lorsque cela n'est pas nécessaire

SELECT CHB_NUMERO, CHB_ETAGE FROM T_CHAMBRE

3

n'employez pas de colonne dans la
clause SELECT...
de la sous requête EXISTS...

SELECT CHB_ID FROM T_CHAMBRE T1 WHERE NOT EXISTS
(SELECT CHB_ID FROM TJ_CHB_PLN_CLI T2 WHERE
PLN_JOUR = '2000-11-11' AND T2.CHB_ID = T1.CHB_ID)

...utilisez l'étoile ou une constante

SELECT CHB_ID FROM T_CHAMBRE T1 WHERE NOT EXISTS
(SELECT * FROM TJ_CHB_PLN_CLI T2 WHERE PLN_JOUR =
'2000-11-11' AND T2.CHB_ID = T1.CHB_ID)

4
évitez de compter une colonne...

SELECT COUNT (CHB_ID) FROM T_CHAMBRE

...quand-il suffit de compter les lignes

SELECT COUNT (*) FROM T_CHAMBRE

http://sqlpro.developpez.com/cours/optimiser/

STID UCA – Bases des données avancées 96

Optimisation de requêtes

5
évitez d'utiliser le LIKE...

SELECT * FROM T_CLIENT WHERE CLI_NOM LIKE 'D%'

...si une fourchette de recherche le
permet

SELECT * FROM T_CLIENT WHERE CLI_NOM BETWEEN 'D' AND 'E '

6

évitez les jointures dans le WHERE...

SELECT * FROM T_CLIENT C, T_FACTURE F WHERE
EXTRACT(YEAR FROM F.FAC_DATE) = 2000 AND F.CLI_ID =
C.CLI_ID

...préférez l'opérateur normalisé JOIN

SELECT * FROM T_CLIENT C JOIN T_FACTURE F ON F.CLI_ID =
C.CLI_ID WHERE EXTRACT(YEAR FROM F.FAC_DATE) = 2000

7

évitez les fourchettes < et > pour des
valeurs discrètes...

SELECT * FROM T_FACTURE WHERE FAC_DATE > '2000-06-18'
AND FAC_DATE < '2000-07-15'

...préférez le BETWEEN

SELECT * FROM T_FACTURE WHERE FAC_DATE BETWEEN '2000-06-
18' AND '2000-07-14'

8

évitez le IN avec des valeurs
discrètes recouvrantes...

SELECT * FROM T_CHAMBRE WHERE CHB_NUMERO IN (11, 12,
13, 14)

...préférez le BETWEEN

SELECT * FROM T_CHAMBRE WHERE CHB_NUMERO BETWEEN 11
AND 14

STID UCA – Bases des données avancées 97

Optimisation de requêtes

9

évitez d'employer le DISTINCT...

SELECT DISTINCT CLI_NOM, CLI_PRENOM FROM T_CLIENT C
JOIN TJ_CHB_PLN_CLI J ON C.CLI_ID = J.CLI_ID WHERE PLN_JOUR
= '2000-11-11'

...si une sous requête EXISTS vous
offre le dédoublonnage

SELECT CLI_NOM, CLI_PRENOM FROM T_CLIENT C WHERE EXISTS
(SELECT * FROM TJ_CHB_PLN_CLI J WHERE C.CLI_ID = J.CLI_ID AND
PLN_JOUR = '2000-11-11')

1
0

évitez les sous requêtes...

SELECT CHB_ID FROM T_CHAMBRE WHERE CHB_ID NOT IN
(SELECT CHB_ID FROM TJ_CHB_PLN_CLI WHERE PLN_JOUR =
'2000-11-11')

...quand vous pouvez utiliser les
jointures

SELECT DISTINCT C.CHB_ID FROM T_CHAMBRE C LEFT OUTER JOIN
TJ_CHB_PLN_CLI P ON C.CHB_ID = P.CHB_ID AND PLN_JOUR =
'2000-11-11' WHERE P.CHB_ID IS NULL

1
1

évitez les sous requêtes avec IN...

SELECT CHB_ID FROM T_CHAMBRE WHERE CHB_ID NOT IN
(SELECT CHB_ID FROM TJ_CHB_PLN_CLI WHERE PLN_JOUR =
'2000-11-11')

...lorsque vous pouvez utiliser EXISTS

SELECT CHB_ID FROM T_CHAMBRE T1 WHERE NOT EXISTS (SELECT
* FROM TJ_CHB_PLN_CLI T2 WHERE PLN_JOUR = '2000-11-11' AND
T2.CHB_ID = T1.CHB_ID)

STID UCA – Bases des données avancées 98

Optimisation de requêtes

1
2

transformez les COALESCE...

SELECT LIF_ID, (LIF_QTE * LIF_MONTANT) * (1 -
COALESCE(LIF_REMISE_POURCENT, 0)/100) -
COALESCE(LIF_REMISE_MONTANT, 0) AS TOTAL_LIGNE FROM
T_LIGNE_FACTURE

...en UNION

SELECT LIF_ID, (LIF_QTE * LIF_MONTANT) FROM T_LIGNE_FACTURE
WHERE LIF_REMISE_POURCENT IS NULL AND
LIF_REMISE_MONTANT IS NULL UNION SELECT LIF_ID, (LIF_QTE *
LIF_MONTANT) - LIF_REMISE_MONTANT FROM T_LIGNE_FACTURE
WHERE LIF_REMISE_POURCENT IS NULL AND
LIF_REMISE_MONTANT IS NOT NULL UNION SELECT LIF_ID,
(LIF_QTE * LIF_MONTANT) * (1 - LIF_REMISE_POURCENT/100) FROM
T_LIGNE_FACTURE WHERE LIF_REMISE_POURCENT IS NOT NULL
AND LIF_REMISE_MONTANT IS NULL UNION SELECT LIF_ID,
(LIF_QTE * LIF_MONTANT) * (1 - LIF_REMISE_POURCENT/100) -
LIF_REMISE_MONTANT FROM T_LIGNE_FACTURE WHERE
LIF_REMISE_POURCENT IS NOT NULL AND LIF_REMISE_MONTANT IS
NOT NULL

1
3

transformez les CASE...

ELECT CHB_NUMERO, CASE CHB_ETAGE WHEN 'RDC' THEN 0
WHEN '1er' THEN 1 WHEN '2e' THEN 2 END AS ETAGE,
CHB_COUCHAGE FROM T_CHAMBRE ORDER BY ETAGE,
CHB_COUCHAGE

...en UNION

SELECT CHB_NUMERO, 0 AS ETAGE, CHB_COUCHAGE FROM
T_CHAMBRE WHERE CHB_ETAGE = 'RDC' UNION SELECT
CHB_NUMERO, 1 AS ETAGE, CHB_COUCHAGE FROM T_CHAMBRE
WHERE CHB_ETAGE = '1er' UNION SELECT CHB_NUMERO, 2 AS
ETAGE, CHB_COUCHAGE FROM T_CHAMBRE WHERE CHB_ETAGE =
'2e' ORDER BY ETAGE, CHB_COUCHAGE

STID UCA – Bases des données avancées 99

Optimisation de requêtes

1
4

transformez les EXCEPT...

SELECT CHB_ID FROM T_CHAMBRE EXCEPT SELECT CHB_ID
FROM TJ_CHB_PLN_CLI WHERE PLN_JOUR = '2000-11-11'

...en jointures

SELECT DISTINCT C.CHB_ID FROM T_CHAMBRE C LEFT OUTER JOIN
TJ_CHB_PLN_CLI P ON C.CHB_ID = P.CHB_ID AND PLN_JOUR =
'2000-11-11' WHERE P.CHB_ID IS NULL

1
5

transformez les INTERSECT...

SELECT CHB_ID FROM T_CHAMBRE INTERSECT SELECT CHB_ID
FROM TJ_CHB_PLN_CLI WHERE PLN_JOUR = '2000-11-11'

...en jointure

SELECT DISTINCT C.CHB_ID FROM T_CHAMBRE C INNER JOIN
TJ_CHB_PLN_CLI P ON C.CHB_ID = P.CHB_ID WHERE PLN_JOUR =
'2000-11-11'

1
6

transformez les UNION...

SELECT OBJ_NOM AS NOM, OBJ_PRIX AS PRIX FROM T_OBJET
UNION SELECT MAC_NOM AS NOM, MAC_PRIX AS PRIX FROM
T_MACHINE ORDER BY NOM, PRIX

...en jointure

SELECT COALESCE(OBJ_NOM, MAC_NOM) AS NOM,
COALESCE(OBJ_PRIX, MAC_PRIX) AS PRIX FROM T_OBJET O FULL
OUTER JOIN T_MACHINE M ON O.OBJ_NOM = M.MAC_NOM AND
O.OBJ_PRIX = M.MAC_PRIX ORDER BY NOM, PRIX

STID UCA – Bases des données avancées 100

Optimisation de requêtes

1
7

transformez les sous requêtes <>
ALL ...

SELECT CHB_ID, CHB_COUCHAGE FROM T_CHAMBRE WHERE
CHB_COUCHAGE <> ALL (SELECT CHB_COUCHAGE FROM
T_CHAMBRE WHERE CHB_ETAGE ='RDC')

... en NOT IN

SELECT CHB_ID, CHB_COUCHAGE FROM T_CHAMBRE WHERE
CHB_COUCHAGE NOT IN (SELECT CHB_COUCHAGE FROM
T_CHAMBRE WHERE CHB_ETAGE ='RDC')

1
8

transformez les sous requêtes =
ANY ...

SELECT CHB_ID, CHB_COUCHAGE FROM T_CHAMBRE WHERE
CHB_COUCHAGE = ANY (SELECT CHB_COUCHAGE FROM
T_CHAMBRE WHERE CHB_ETAGE ='RDC')

... en IN

SELECT CHB_ID, CHB_COUCHAGE FROM T_CHAMBRE WHERE
CHB_COUCHAGE IN (SELECT CHB_COUCHAGE FROM T_CHAMBRE
WHERE CHB_ETAGE ='RDC')

1
9

transformez les sous requêtes ANY /
ALL ...

SELECT CHB_ID, CHB_COUCHAGE FROM T_CHAMBRE WHERE
CHB_COUCHAGE > ALL (SELECT CHB_COUCHAGE FROM
T_CHAMBRE WHERE CHB_ETAGE ='RDC')

...en combinant sous requêtes et
aggrégat

SELECT CHB_ID, CHB_COUCHAGE FROM T_CHAMBRE WHERE
CHB_COUCHAGE > (SELECT MAX(CHB_COUCHAGE) FROM
T_CHAMBRE WHERE CHB_ETAGE ='RDC')

STID UCA – Bases des données avancées 101

Optimisation de requêtes

2
0

évitez les sous requêtes corrélées...

SELECT DISTINCT VILLE_ETP FROM T_ENTREPOT AS ETP1
WHERE NOT EXISTS (SELECT * FROM T_RAYON RYN WHERE NOT
EXISTS (SELECT * FROM T_ENTREPOT AS ETP2 WHERE
ETP1.VILLE_ETP = ETP2.VILLE_ETP AND (ETP2.RAYON_RYN =
RYN.RAYON_RYN)))

...préférez des sous requêtes sans
corrélation

SELECT DISTINCT VILLE_ETP FROM T_ENTREPOT WHERE
RAYON_RYN IN (SELECT RAYON_RYN FROM T_ENTREPOT WHERE
RAYON_RYN NOT IN (SELECT RAYON_RYN FROM T_ENTREPOT
WHERE RAYON_RYN NOT IN (SELECT RAYON_RYN FROM
T_RAYON))) GROUP BY VILLE_ETP HAVING COUNT (*) = (SELECT
COUNT(DISTINCT RAYON_RYN) FROM T_RAYON)

2
1

évitez les sous requêtes corrélées...

SELECT FAC_ID, (SELECT MAX(LIF_QTE * LIF_MONTANT) FROM
T_LIGNE_FACTURE L WHERE F.FAC_ID = L.FAC_ID) FROM
T_FACTURE F ORDER BY FAC_ID

...préférez des jointures

SELECT F.FAC_ID, MAX(LIF_QTE * LIF_MONTANT) FROM T_FACTURE
F JOIN T_LIGNE_FACTURE L ON F.FAC_ID = L.FAC_ID GROUP BY
F.FAC_ID ORDER BY F.FAC_ID

2
2

n'utilisez pas de nombre dans la
clause ORDER BY...

SELECT LIF_ID, (LIF_QTE * LIF_MONTANT) FROM
T_LIGNE_FACTURE ORDER BY 1, 2

...spécifiez de préférence les noms des
colonnes, y compris dans la clause
SELECT

SELECT LIF_ID, (LIF_QTE * LIF_MONTANT) AS LIF_MONTANT FROM
T_LIGNE_FACTURE ORDER BY LIF_ID, LIF_MONTANT

STID UCA – Bases des données avancées 102

Optimisation de requêtes : Explain
Plan

http://www.toutenligne.com/index.php?contenu=sql_explain

• SGBD propose souvent une commande
– EXPLAIN PLAN qui donne le plan d’exécution de l’optimiseur

• Utilisation de la commande
1. Créer une table destinée à contenir toutes les informations

relatives à un plan d'exécution (Plan_table)

2. Exécuter une requête en demandant le stockage des
explications relatives à cette requête dans la table crée

3. Interroger la table remplie pour connaître le plan
d'exécution

http://www.toutenligne.com/index.php?contenu=sql_explain

STID UCA – Bases des données avancées 103

Optimisation de requêtes : Explain
Plan

1. Création de la table

STID UCA – Bases des données avancées 104

Optimisation de requêtes : Explain
PlanOPERATIONS OPTIONS SIGNIFICATION

AGGREGATE GROUP BY Une recherche d’une seule ligne qui est le résultat de l’application d’une fonction de
group à un groupe de lignes sélectionnées.

AND-EQUAL Une opération qui a en entrée des ensembles de rowids et retourne l’intersection de
ces ensembles en éliminant les doublants. Cette opération est utilisée par le

chemin d’accès par index.

CONNECT BY Recherche de ligne dans un ordre hiérarchique

COUTING Opération qui compte le nombre de lignes sélectionnées.

FILTER Accepte un ensemble de ligne, appliqué un filter pour en éliminer quelque unes et
retourne le reste.

FIRST ROW Recherché de le première ligne seulement.

FOR UPDATE Opération qui recherche et verrouille les lignes pour une mise à jour

INDEX UNIQUE SCAN Recherche d’une seule valeur ROWID d’un index.

INDEX RANGE SCAN Recherche d’une ou plusieurs valeurs ROWID d’un index. L’index est parcouru dans
un ordre croissant.

INDEX RANGE SCAN
DESCENDING

Recherche d’un ou plusieurs ROWID d’un index. L’index est parcouru dans un ordre
décroissant.

INTERSECTION Opération qui accepte deux ensembles et retourne l’intersection en éliminant les
doublons.

MARGE JOIN+ Accepte deux ensembles de lignes (chacun est trié selon un critère), combine chaque
ligne du premier ensemble avec ses correspondants du deuxième et retourne le

résultat.

STID UCA – Bases des données avancées 105

Optimisation de requêtes : Explain
Plan

OPERATIONS OPTIONS SIGNIFICATION

MARGE JOIN+ OUTER MARGE JOIN pour effectuer une jointure externe

MINIUS Différence de deux ensembles de lignes.

NESTED LOOPS Opération qui accepte deux ensembles, l’un externe et l’autre interne. Oracle
compare chaque ligne de l’ensemble externe avec chaque ligne de l’ensemble

interne et retourne celle qui satisfont une condition.

NESTED LOOPS OUTER Une boucle imbriquée pour effectuer une jointure externe.

PROJECTION Opération interne

REMOTE Recherche de données d’une base distante.

SEQUENCE Opération nécessitant l’accès à des valeurs du séquenceur

SORT UNIQUE Tri d’un ensemble de lignes pour éliminer les doublons.

SORT GROUP BY Opération qui fait le tri à l’intérieur de groupes

SORT JOIN Tri avant la jointure (MERGE-JOIN).

SORT ORDER BY Tri pour un ORDER BY.

TABLE ACCESS FULL Obtention de toutes lignes d’une table.

TABLE ACCESS CLUSTER Obtention des lignes selon la valeur de la clé d’un cluster indexé.

TABLE ACCESS HASH Obtention des lignes selon la valeur de la clé d’un hash cluster

TABLE ACCESS BY ROW ID Obtention des lignes on se basant sur les valeurs ROWID.

UNION Union de deux ensembles avec élimination des doublons.

VIEW Opération qui utilise une vue et retourne le résultat à une autre opération.

STID UCA – Bases des données avancées 106

Optimisation de requêtes : Explain
Plan

2. Utilisation de la table en SQL
a. EXPLAIN PLAN

SET STATEMENT_ID=' Identifiant_choisi '
FOR requête ;
ex :

EXPLAIN PLAN
SET STATEMENT_ID='sel1'
FOR SELECT NOM from ACTEURS order by NOM;

b. SELECT COM_ID, OP, OPTIONS, ID, PARENT_ID, POSITION
FROM PLAN_TABLE
WHERE STATEMENT_ID='sel1';
ex :

STATEMENT_ ID OPERATION OPTIONS ID PARENT_ID POSITION

sel2
sel2
sel2

SELECT STATEMENT
SORT

TABLE ACCESS

GROUP BY
FULL

0
1
2

0
1

1
1

STID UCA – Bases des données avancées 107

BD Temporelles

• Constat
– Les BD actuelles stockent les informations du présent et pas

les informations du passé qui ont été supprimées
– Si utilisateur souhaite interroger & analyser des données en

considérant le facteur temps, il est responsable de la gestion
& maintenance des données passées et futures

• Objectif
– Introduire un facteur temps dans les BD actuelles
– Permet de comparer des valeurs sur l’axe du temps

• Implémentation
– Toute information d’une BD temporelle (valeur, table,

tuples…) sont définies par rapport à l’axe du temps
– En introduisant la validité de l’information stockée

STID UCA – Bases des données avancées 108

BD Temporelles

• Contre-exemple
– Extraire les employés

engagés par l’entreprise avant l’âge de 20 ans?
• SELECT E#, NOM

FROM EMPLOYE
WHERE DATE_EMBAUCHE — DATE_NAISSANCE <=20

– Aucune info sur le passé !
• Si Humbert change de fonction, on écrase sa précédente

fonction

STID UCA – Bases des données avancées 109

BD Temporelles

• Solution
– Introduire un champ valid_from dans la table
– SGBD Temporel

• Prend en charge l’ensemble des valeurs de l’axe de temps
comme temps valide

• Dispose dans le langage d’éléments temporels

STID UCA – Bases des données avancées 110

BD Temporelles

• Exemple
– Déterminer la fonction de Meier au 01/01/1988?

• SQL classique
SELECT FONCTION
FROM TEMP_EMPLOYE A
WHERE NOM=« MEIER » AND A.VALID_FROM =

SELECT(MAX(VALID_FROM)
FROM TEMP_EMPLOYE B
WHERE B.NOM=A.NOM AND B.VALID_FROM

<=’01/01/1988’)
• SQL Temporel

SELECT FONCTION
FROM TEMP_EMPLOYE
WHERE NOM=‘MEIER’ AND VALID_AT(01/01/1988)

STID UCA – Bases des données avancées 111

BD Réparties

• Principe
– BD stockées sur différents sites
– Transparent pour l’utilisateur ( 1 seule BD pour lui)
– Traitement d’une requête peut se faire sur un site différent

de celui où la requête a été posée
– Problèmes particuliers

• Gestion des transactions sur le SGBD
• Optimisation des requêtes

STID UCA – Bases des données avancées 112

BD Réparties

• Duplication
– Le système maintient différentes copies des données sur tous

les sites (exécution rapide des requêtes et résistance aux
pannes)

• Fragmentation
– Les relations (tables) sont partitionnées en différents

fragments chacun sur un site distinct

• Fragmentation et Duplication
– Combinaison des 2

STID UCA – Bases des données avancées 113

BD Réparties

• Disponibilité
– Si 1 site est indisponible, on peut utiliser un autre pour

extraire l’information recherchée

• Parallélisme
– Les requêtes sur R peuvent être traitée en exécutant

plusieurs sous-requêtes en parallèle sur différents sites

• Mise À Jour
– Le coût des MAJ se voit augmenter (maintenir la cohérence

des différentes copies)

• Contrôle de concurrence
– Plus complexe car verrouiller un tuple sur le site si implique

son verrouillage sur sj

STID UCA – Bases des données avancées 114

BD Réparties

• Division de R en différents fragments R1, …, Rn
(contenant assez d’infos pour reconstruire R au
besoin)
– Horizontale : chaque tuple de R est affecté à un ou plusieurs

fragments
– Verticale : le schéma R est subdivisé en sous-schémas

• Le même clé pour tous les sous-schémas (afin de
garantir une décomposition sans perte)

• On peut rajouter un attribut identifiant le tuple dans
la sous-relation (l’union des Ri peut être différente de
R)

STID UCA – Bases des données avancées 115

BD Réparties

• Exemple de décomposition horizontale
– Compte(Agence,Numcompte,Solde)

Agence NumCompte Solde

Talence 123 1200

Talence 321 -1220

CompteCompte11

Agence NumCompte Solde

Pessac 124 100

Pessac 421 -122

CompteCompte22

STID UCA – Bases des données avancées 116

BD Réparties

• Exemple de décomposition verticale
– Compte(Agence,Numcompte,NomTit,Solde)

Agence NomTit IdTuple

Talence David 1

Pessac David 3

Talence Martin 2

Pessac Dupont 4

CompteCompte11

Numcomp
te Solde IdTuple

123 1200 1

321 -1200 2

124 100 3

421 -122 4

CompteCompte22

STID UCA – Bases des données avancées 117

BD Réparties

• Horizontale
– Possibilité de parallélisation
– Les tuples sont situés au niveau des sites où ils sont le plus

souvent accédés

• Verticale
– Chaque partie d’un tuple peut être localisée là où elle est le

plus accédée
– Parallélisme
– L’attribut IdTuple permet de reconstituer le tuple

STID UCA – Bases des données avancées 118

BD Réparties

– L’utilisateur n’a pas à connaître la localisation des données. Il
ne faut pas non plus qu’un même nom désigne deux choses
différentes sur des sites différents

– Chaque donnée doit avoir un nom unique connu dans tous le
réseau

– Localiser une donnée doit se faire efficacement
– On doit pouvoir changer l’emplacement d’une donnée sans

qu’il faille revoir les transactions
– Chaque site doit pouvoir créer de nouvelles données

STID UCA – Bases des données avancées 119

BD Réparties

• Lors MAJ, SGBDD doit garantir que tous les duplicata et
les fragments associés à une info soient modifiées

• Horizontale
– Considérons l’insertion du tuple (Talence, 555,1000) dans

Compte
Compte1=Agence=Talence(Compte)
Compte2=Agence=Pessac(Compte)
 tuple doit être insérer dans Compte1

• Verticale
– Tuple (Talence,555,Nathalie,1000) doit être décomposé en 2

tuples : (Talence,Nathalie,5) et (555,1000,5)

• Problème : si la relation globale est accédée en
concurrence, une copie peut être modifiée avant une
autre

STID UCA – Bases des données avancées 120

BD Réparties

• Ds 1 BD centralisée, le coût = le nombre d’accès
disque

• Ds 1 BD distribuée, existe d’autres paramètres
– Transmissions des données via le réseau

– Le gain potentiel a faire exécuter la requête en // sur
plusieurs sites

• Exemples de parallélisation
 Solde>0(Compte) décomposée en Solde>0(Compte1) 

Solde>0(Compte2)

STID UCA – Bases des données avancées 121

Entrepôt de données

en téraoctetsen gigaoctetsTaille

lectures, analyses croisées, rafraîchissements
lectures, mises à jour,
suppressions

Opérations

multidimensionnellebidimensionnellePerception

élevéfaible
Niveau de
consolidation

souvent différéeimmédiate, temps réelMise à jour

historisées, parfois agrégéesactuelles, brutesDonnées

plus rarefréquenteNormalisation

étoile, flocon de neigeentité/relationModèle de données

analyse, support à la décision
gestion courante,
production

Opération

Entrepôt de donnéesBase de donnéesCaractéristique

http://fr.wikipedia.org/wiki/Donn%C3%A9e
http://fr.wikipedia.org/wiki/Mod%C3%A8le_de_donn%C3%A9es
http://fr.wikipedia.org/wiki/Mod%C3%A8le_de_donn%C3%A9es
http://fr.wikipedia.org/wiki/Mod%C3%A8le_de_donn%C3%A9es
http://fr.wikipedia.org/wiki/Donn%C3%A9e
http://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es
http://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es

STID UCA – Bases des données avancées 122

Entrepôt de données

• Ces différences tiennent au fait que les entrepôts permettent des requêtes
qui peuvent être complexes et qui ne reposent pas nécessairement sur une
unique table.

• Exemples de requêtes OLAP :
• Quel est le nombre de paires de chaussures vendues par le magasin

"OnVendDesChaussuresIci" en mai 2003 ET Comparer les ventes avec le
même mois de 2001 et 2002

• Quelles sont les composantes des machines de production ayant eu le plus
grand nombre d’incidents imprévisibles au cours de la période 1992-97 ?

• Les réponses aux requêtes OLAP peuvent prendre de quelques secondes à
plusieurs minutes.

• Architecture d'un entrepôt de données [modifier]
• Un entrepôt de données est généralement construit selon une architecture

en 3 strates :
• d'un serveur d'entrepôt (serveur de données)
• d'un serveur OLAP (de type HOLAP/MOLAP ou ROLAP)
• d'un client

– outil pour l'exécution des requêtes
– outil pour l'analyse des données

http://fr.wikipedia.org/wiki/Requ%C3%AAte
http://fr.wikipedia.org/wiki/OLAP
http://fr.wikipedia.org/wiki/OLAP
http://fr.wikipedia.org/wiki/Donn%C3%A9e
http://fr.wikipedia.org/w/index.php?title=Entrep%C3%B4t_de_donn%C3%A9es&action=edit§ion=4
http://fr.wikipedia.org/wiki/Donn%C3%A9e
http://fr.wikipedia.org/wiki/Serveur_informatique
http://fr.wikipedia.org/wiki/Donn%C3%A9e
http://fr.wikipedia.org/wiki/OLAP
http://fr.wikipedia.org/wiki/HOLAP
http://fr.wikipedia.org/wiki/MOLAP
http://fr.wikipedia.org/wiki/ROLAP
http://fr.wikipedia.org/wiki/Requ%C3%AAte
http://fr.wikipedia.org/wiki/Donn%C3%A9e

STID UCA – Bases des données avancées 123

Fouille de données

• Analyse exploratoire des données
– Par l’application de méthodes statistiques & IA sur une

grande quantité de données

• Objectifs
– Trouver des configurations intéressantes ds les données qui

représentent des comportements inhabituels
• Exemple

– Soudaine augmentation d’activité d’une carte de crédit peut
signifier qu’elle a été volée

STID UCA – Bases des données avancées 124

Fouille de données

– Identifier des règles
• D’association

– une personne achetant des chaussures, achète souvent des
chaussettes

• De corrélation de séquence
– Si une personne achète des chaussures aujourd’hui, il

achètera des chaussettes dans les 5 jours

• De classification
– Si revenu > 50000€/an Alors faible risque pour le crédit

d’emprunts

• ...

  Cours de Data Mining

STID UCA – Bases des données avancées 125

BD hétérogènes & Web

• XML
– eXtensible Markup Language
  HTML mais voisin dans le concept de langage à balises

• Balise
– Ouvrante : <nom_balise>
– Fermante : <\nom_balise>

• Élément : Balise ouvrante + contenu + balise fermante
– <hamlet> Être ou ne pas être <\hamlet>

• Attributs : ensemble de propriétés données à une balise
– <BODY BGCOLOR= "#0000" …>

• XML
– Plus souple que HTML car on peut définir ses propres balises & attributs
– Pas uniquement utilisé pour être affiché sur le web…
– C’est une façon de baliser des données afin de les rendre auto

descriptives

STID UCA – Bases des données avancées 126

XMLXML
Exemple

<?xml version="1.0" encoding="ISO-8859-1" ?>
<Facture

nomClient="Kevin Williams"
adresseFacturation="742 Evergeen Terrace"
villeFacturation="SpringField"
…
<LigneDeCommande
codeArticle="124AB3A"
descriptionArticle="Truc(7.5cm)"
quantité="1" …

</LigneDeCommande>
<LigneDeCommande
codeArticle="124C56A"
descriptionArticle="Machin"
quantité="1" …

</LigneDeCommande>
</Facture>

STID UCA – Bases des données avancées 127

XMLXML
Intérêts & DTD

• XML = texte brut
– Accessibles à tout langage de programmation, à toute plate-

forme
– Facilement transmissible par HTTP
– Échange de données très simplifié

• Vocabulaire
– Ensemble des balises & attributs pour un domaine donné
– Définitions de type de documents (Definition Type Document

= DTD) = Moyen de définir un vocabulaire
• Éléments pouvant être présent dans un document
• Le nombre d'instances de chaque éléments
• Ordre des éléments
• Attributs acceptés par les balises (obligatoire, facultatif, valeur

par défaut…)

STID UCA – Bases des données avancées 128

XMLXML
Traitements

• Parseur
– Composant logiciel lisant le document XML comme texte brut

• API (Application Programming Interface)
– Offre aux programmeurs un ensemble de fonctionnalités

pouvant être appelées depuis 1 prog pour réclamer des infos
au parseur alors qu'il traite le doc. XML

• Validateurs
– Certains parseurs ont la possibilité de vérifier qu'un

document XML est au format d'une DTD mais cela nécessite
plus de ressources (temps, mémoire)

STID UCA – Bases des données avancées 129

XMLXML
Blocs fondamentaux

• Un fichier XML peut contenir
– Déclaration XML
– Éléments
– Attributs
– Données textuelles (CDATA)
– Instructions de traitement
– Commentaires
– Références d'entités

STID UCA – Bases des données avancées 130

XMLXML
Déclaration XML

• Elle est facultative mais fortement recommandée
pour que les applications utilisatrices de ce document
sachent que c'est un document XML

• Indique le format XML utilisé
– <?xml version="1.0">

– Rien avant, même un espace
– Possibilité de définir le langage utilisé (encoding="ISO-8859-1")

STID UCA – Bases des données avancées 131

XMLXML
Éléments

• Correspondent aux composants les plus importants
des documents XML

• Un document XML doit posséder au moins un élément
, dans lequel sont imbriqués tous les autres balisages

• L'élément de plus haut niveau porte le nom d'élément
document (élément racine)

• Syntaxe
– L'écriture <Facture /> correspond à un élément vide (ayant

aucun contenu)
– Distinction majuscule/minuscule
– Imbrication correcte des balises. Aucun chevauchement de

balises est autorisé

STID UCA – Bases des données avancées 132

XMLXML
Attributs & Données & Commentaires

• Attributs
– La valeur d'un attribut est toujours entre guillemets ("")
– Pas d'ordre dans les attributs d'une balise

• Données textuelles
– Section non interprétée par le parseur
– Ne doit pas contenir les caractères & et < sinon ils sont

interprétés par le parseur

• Commentaires
– <!– mes commentaires -->
– Un commentaire ne peut donc contenir --

STID UCA – Bases des données avancées 133

XMLXML
Section CDATA

• Pour éviter que le parseur interprète des caractères
spéciaux, il faut les mettre dans la section CDATA qui
débute par <![CDATA[texte à ne pas interpréter]]>

• Désactive la détection de balisage
• Exemple

<?xml version="1.0" encoding="ISO-8859-1" ?>
<BalisageExemple>

<![CDATA[Pour déclarer un élément, utilisez une balise d'ouverture
d'élément : <MaBalise>]]>

</BalisageExemple>

Balise Balise
non non

interprétéinterprété
ee

STID UCA – Bases des données avancées 134

XMLXML
Données textuelles  CDATA

• 1ére version
<?xml version="1.0" encoding="ISO-8859-1" ?>
<BalisageExemple>

<![CDATA[Pour déclarer un élément, utilisez une balise d'ouverture d'élément :
<MaBalise>]]>

</BalisageExemple>

• 2ème version
<?xml version="1.0" encoding="ISO-8859-1" ?>
<BalisageExemple>

Pour déclarer un élément, utilisez une balise d'ouverture d'élément : <!
CDATA[[<MaBalise>]]>

</BalisageExemple>

• Dans la 2ème version, le parseur va considérer que l'élément
BalisageExemple est composé de deux choses :une donnée
textuelle ("Pour …élément:") et une section CDATA

STID UCA – Bases des données avancées 135

XMLXML
Références d'entités

• Pour éviter le problème précédent, on introduit les références
d'entités qui permettent d'inclure des caractères spéciaux dans
un document XML

• Les différentes références d'entités standard
< < (espace insécable)

> > &#chiffre; (caractère de code ascii chiffre)

& &
' '
" "

• Exemple
<?xml version="1.0" encoding="ISO-8859-1" ?>
<BalisageExemple>

Pour déclarer un élément, utilisez une balise d'ouverture d'élément : <MaBalise>
</BalisageExemple>

STID UCA – Bases des données avancées 136

XMLXML
Instructions de traitement

• Permet de préciser qu'à un endroit précis du
document, le parseur doit déclencher une certaine
action

• <? Instructions de traitement ?>

• Exemple
– <?xml-stylesheet type="text/html" href="#style1"?>

– La cible de l'instruction de traitement : xml-stylesheet

– Chaîne sur laquelle opérer : type="text/html" href="#style1"

– Il faudra analyser manuellement la chaine si on veut accéder
aux différentes informations

STID UCA – Bases des données avancées 137

XMLXML
DTD

• Définition de Type de Documents
– Constitué d'un ensemble de règles devant être respectés par

tout document XML auquel la DTD s'applique
– Se caractérise par

• Un fichier externe
<!DOCTYPE MonDocXML SYSTEM "http://www.monsite. Com/Xml/
MonDocXML.dtd">

• Inclus dans le document XML
<!DOCTYPE MonDocXML [

<!ELEMENT MonDocXML (#PCDATA)>]
>

• Une définition mixte (externe + interne)

Définition de Définition de
ma DTD ma DTD
interneinterne

STID UCA – Bases des données avancées 138

XML
DTD – Déclaration d'éléments

• C'est le plus important lors de la déclaration d'une
DTD. Toute DTD doit en posséder au moins une

• Déclaration
<!ELEMENT Nom_Element (ModèleContenu)>
ModèleContenu définit ce que peut contenir l'élément

• Syntaxe
– | permet de choisir parmi un ensemble d'éléments

<!ELEMENT Foo (A | B | C)> soit l'un ou l'autre mais pas tous
– Cardinalité des éléments

• ? Facultatif (présent 0 ou 1 fois)
• * Facultatif multiple (présent 0 fois ou plus)
• (rien) Obligatoire (présent 1 et 1 seule fois)
• +Obligatoire multiple (présent au moins 1 fois)

STID UCA – Bases des données avancées 139

XML
DTD – Documents valides

DTD : <!ELEMENT Foo((A|B+), C?)>

Document XML valide
<Foo>

<A>Du contenu
<C>Bla Bla</C>

</Foo>

Document XML valide
<Foo>

Du contenu
Encore du contenu

</Foo>

Document
XML valide
….

STID UCA – Bases des données avancées 140

XML
DTD – Types de données

• Chaîne de caractères : #PCDATA

• Vide : EMPTY

• Quelconque de structuré : ANY

• Exemple
– DTD : <!ELEMENT Foo (#PCDATA|A|B|C)*>

Voici du <A>texte avec des éléments

– DTD : <!ELEMENT Foo (EMPTY)>
<Foo /> ou bien <Foo></Foo>

– DTD : <!ELEMENT Foo ANY>
<A>Ceci est<C> bien </C><D>balisé</D>

STID UCA – Bases des données avancées 141

XML
DTD – Attributs

• Déclaration d'attribut
– <!ATTLIST nom_élément définition_attrib*>
– définition_attrib  nom_attrib type_attrib valeur_défaut

– Exemple
<!ELEMENT Foo EMPTY>
<!ATTLIST Foo Texture CDATA #REQUIRED>

• Type d'attribut
– Chaîne de caractères : CDATA

<!ELEMENT Foo EMPTY>
<ATTLIST Foo Texture CDATA #REQUIRED
Couleur CDATA #REQUIRED >
XML:<Foo Texture="bumpy" Couleur="rouge&bleu" />

STID UCA – Bases des données avancées 142

XML
DTD – Attributs

– Identifiant unique : ID
<!ELEMENT Foo EMPTY>
<ATTLIST Foo FooID ID #REQUIRED>
XML : <Foo FooID="foo1" />
<Foo FooID="foo1" /> <!—2 éléments Foo ne peuvent pas porter le
même nom-->
<Foo FooID="17" /><!—17 n'est pas un nom XML valide-->

– Référence à un autre élément XML : IDREF
<!ELEMENT Auteur EMPTY>
<!ATTLIST Auteur AuteurID ID #REQUIRED>
<!ELEMENT Livre EMPTY>
<!ATTLIST Livre LivreID #REQUIRED AuteurIDREF IDREF>
XML : <Auteur AuteurID="auteur1" />
<Livre LivreID="livre1" AuteurIDREF="auteur1" />
<Livre LivreID="livre2" AuteurIDREF="livre1" />
la dernière ligne est malheureusement valide

STID UCA – Bases des données avancées 143

XML
DTD – Attributs

– Référence à plusieurs autres éléments XML : IDREFS
<!ELEMENT Foo EMPTY>
<ATTLIST Foo FooID ID #REQUIRED>
<!ELEMENT Bar EMPTY>
<ATTLIST Bar BarID ID #REQUIRED FooIDREF IDREFS>
XML : <Foo FooID="foo1" />
 <Foo FooID="foo2" />
<Bar BarID="bar1" FooIDREF="foo1 foo2"/>

– Référence à 1 ou +sieurs entités non-XML : ENTITY ou
ENTITIES ( IDREF & IDREFS)

– Valeur respectant la règle des noms de variable XML (chiffre,
lettre et autres caractères spécifiques) : NMTOKEN

– Ensemble de valeurs respectant les règles : NMTOKENS

STID UCA – Bases des données avancées 144

MCD  DTD + XML

• Proposé par Christine Delcroix
• Vocabulaire

– <!ELEMENT Client (Nom, Prénom?, Adresse, Téléphone+,
Commandes*)>

– Nom est un sous-types de Client

– Client est un sur-types de Adresse

• Plan de transformation en 9 étapes
Appliquer sur le schéma conceptuel suivant

STID UCA – Bases des données avancées 145

MCD  DTD + XML
Étude de cas

NCLI
Nom

Adresse
Voie

Code Postal
Ville

Telephone
Cat

Compte

CLIENT

NCOM
Date

COMMANDE
Passe 0,n1,1

0,n
NPRO
Libelle

Prix
Stock

PRODUIT

Détail
QCOM

0,n

STID UCA – Bases des données avancées 146

MCD  DTD + XML
Étape 1

• Éliminer les associations N-N
– En les transformant en entités

NCLI
Nom

Adresse
Voie

Code Postal
Ville

Telephone
Cat

Compte

CLIENT

NCOM
Date

COMMANDE
Passe 0,n

1,1

0,n

NPRO
NCOM
QCOM

DÉTAIL

Détail_
Com

1,1

NPRO
Libelle

Prix
Stock

PRODUIT

0,n

Détail_
Pro

1,1

STID UCA – Bases des données avancées 147

MCD  DTD + XML
Étape 2

• Construire la structure hiérarchique du document XML
à partir du graphe du MCD
– (1) Déterminer les entités racines = correspondent aux

entités qui ne jouent aucun rôle de cardinalité égale à 1-1
D’autres entités racines peuvent être choisies par l’utilisateur
de la méthode de traduction

Exemple : CLIENT et PRODUIT ne font référence à aucune
autre entités. Ils sont donc racines

STID UCA – Bases des données avancées 148

MCD  DTD + XML
Étape 2

– (2) Déterminer les descendants des racines
• Graphiquement, une association représente lien entre un sur-

type d’entités et un ensemble de sous-types donc les sous-types
sont les descendants du sur-type

– Construire la hiérarchie revient à nommer un certain nombre
de rôles d’associations par « p » pour père en respectant les
règles suivantes :

• Le rôle joué par 1 sous-type doit avoir une cardinalité égale à 1-1
• Dans la plupart des cas, une entité n’à qu’un seul sur-type
• Une entité marqué racine ne peut avoir de sur-type

– Remarque
• Toutes les associations du MCD ne seront pas toutes conservées

Les associations qui ne possèdent pas de « p » seront
supprimées

STID UCA – Bases des données avancées 149

MCD  DTD + XML
Étape 2

• Client = sur-type de Commande

• Détail = sous-type de Commande ou Produit
Choix de prendre Commande

NCLI
Nom

Adresse
Voie

Code Postal
Ville

Telephone
Cat

Compte

CLIENT

NCOM
Date

COMMANDE
Passe 0,n

1,1

0,n

NPRO
NCOM
QCOM

DÉTAIL

Détail_
Com

1,1

NPRO
Libelle

Prix
Stock

PRODUIT

0,n

Détail_
Pro

1,1

P

P

STID UCA – Bases des données avancées 150

MCD  DTD + XML
Étape 3

• Raffinement de la structure hiérarchique
– Objectif : obtenir un schéma à racine unique et la

représentation du MCD doit avoir une structure d’arbre
– Création d’une racine unique qui sera sur-type des anciens

éléments identifiés comme racines dans étape 2

STID UCA – Bases des données avancées 151

MCD  DTD + XML
Étape 3

NCLI
Nom

Adresse
Voie

Code Postal
Ville

Telephone
Cat

Compte

CLIENT

NCOM
Date

COMMANDE

Passe

0,n
1,1

0,n

NPRO
NCOM
QCOM

DÉTAIL
Détail_
Com 1,1

NPRO
Libelle

Prix
Stock

PRODUIT
0,n Détail_

Pro

1,1

P

P

1
2

Racine

0,n

P

1,1

1,1

0,n

P

STID UCA – Bases des données avancées 152

MCD  DTD + XML
Étape 4

• Spécifier le type de contenu des entités
– Pour chaque entité, il faut préciser l’organisation (le nombre

d’occurrence, et l’ordre d’apparitions) de l’ensemble de ses
entités sous-types

– Exemple
Seul l’élément Racine à plusieurs entités sous-types (Produit
et Client)
et la définition DTD correspondante est
<!ELEMENT Racine(PRODUIT *, CLIENT *)>

STID UCA – Bases des données avancées 153

MCD  DTD + XML
Étape 5 et Étape 6

• Éliminer les types d’associations non marqués
– Faire disparaître les rôles qui n’apparaissent pas comme

« P »
– Les associations non marqués sont transformées en clef

étrangères; ce qui se traduit en XML par l’utilisation des
mots-clés ID et IDREF

• Modifier la cardinalités des rôles des associations
– Transformer chaque cardinalité du MCD en cardinalité valide

XML (0-1, 1-1, 0-N, 1-N)
• Si la cardinalité minimale est supérieure à 1, la ramener à 1
• Si la cardinalité maximale est supérieure à 1, la mettre à N

– Exemple : pas de modifs

STID UCA – Bases des données avancées 154

MCD  DTD + XML
Étape 7, 8, 9

• Étape 7 : Gestion des références d’entités
– Traitements des groupes référentiels
– Traitements des identifiants
– Traitements des autres groupes
– Correspond à tous transformer sous forme de ID, IDREF,

IDREFS

• Étape 8 : traitements des attributs
– Transformer les attributs au format XML donc #PCDATA ou

#ANY

• Étape 9 : Renomination
– Nom de certains objets est superflu ou explicite

• Relativement simple sous le schéma est en 3FN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

