
D. Malchiodi

Learning to program
in a constructionist way



Programming
Programming: producing a precise description of how to carry out a task or 
to solve a problem.
An interpreter, different from the producer of the description, can
understand it and effectively carry out the task as described.



Why can it be difficult?
Different concerns (not necessarily separated neither in theory
nor in practice)
● “Solve problems” (!)
● Describe solutions “computationally”

● managing the description itself (the text of the code),
● considering the actions that take place when the program is run by the 

interpreter
● Collaborate with others
The dichotomy between static visible code and its implicit
dynamics emerges as a critical issue when learning to program.



Learning outcomes
Learners should develop:
● a perception of programming that does not reduce to production of code, 

but includes relating instructions to what will happen when the program is 
executed, and eventually comes to include producing applications for use 
and seeing it as a way to solve problems;

● a mental model of a notional machine that allows them to make the 
association (static) syntax - (dynamic) semantics and to trace program 
execution correctly and coherently;

● a sense of the advantage to formulate “solutions” in a way that allows a 
processing agent to carry them out (computational thinking)

● an appreciation of the intrinsic collaborative nature of modern software 
artifacts, where everything depends on components designed by others, 
and has the potential of being used in new contexts.



Constructionism
Constructionism [Papert and Harel 1991]:
● strategy of education which has its roots in Piaget’s constructivist theory 

of learning as an active process;
● people actively construct knowledge from their personal experience of the 

world;
● students do not just receive pre-built ideas from teachers: they have to 

make them up by engaging themselves with problems, projects, and other 
people (instructors, but also peers);

● personally-meaningful goals and public artifacts (not necessarily concrete 
ones: either “a sand castle on the beach or a theory of the universe”) that 
can be shared and discussed with others;

● four P-words: Projects, Peers, Passion, Play.



Why constructionism?
● motivation: programming tasks should be engaging and significant to 

learners;
● a constructivist approach: the construction of knowledge is to be fostered, 

through activities as much as suitable as possible to group work and shared meta-cognition;
● empowering people to do “stuff” is more important than acquiring specific 

(job-relevant) skills, logical/computational aspects of programming more 
relevant than “real-world” syntax;

● executable programs are concrete objects to talk about and to tinker with.



Creative learning spiral [Resnick, 2017]

...vs iterative software development



Unplugged approaches
● CSUnplugged!
● Algomotricity: it starts unplugged, but ends with a computer-based phase 

to close the loop with pupils’ previous acquaintance with applications
Unplugged activities can be an important step forward:
● a constructivist environment: tangible objects, dramatised processes, 

seem to be more suitable to shared meta-cognition.
● suitable in very different (social/economical) contexts;
● no undesired technological hurdles: they do not involve the use of 

technology, with which not all teachers are at ease;



Notional machine
When a group of people program the same ‘machine’, a shared semantics is 
in fact given, but novices do not necessarily write their programs for the 
formal interpreter they use, rather for the notional machine they actually 
have in their minds:
● an abstract computer responsible for executing programs of a particular 

kind;
● it normally encompasses an idealized version of the interpreter and other 

aspects of the development and run-time environment;
● it should bring also a complementary intuition of what cannot be done, at 

least without specific directions of the programmer.



Abstract programming patterns
Help novices in recognizing how a relatively low number of abstract patterns 
can be applied to a potentially infinite spectrum of specific conditions.
● Role of variables: knowledge about use cases of variables (mutable values) 

in order to solve recurring problems.
● Loop patterns.
● Recursive strategies.
But also, teachers should be familiar and able to recognize common 
misconceptions, i.e., understandings that are deficient or inadequate for 
many practical programming contexts and learn to ask the right questions.



Programming environments
● LOGO (1967) «in teaching the computer how to think, children embark on 

an exploration about how they themselves think» [Papert, 1980]
● Smalltalk (1976) «everyone should be comfortable with programming and 

computing devices should become ubiquitous in learning environments 
“along the lines of Montessori and Bruner”»

● BASIC (1964)
● Pascal (1970)
● Lisp, Scheme, Racket



Visual programming
● Scratch & Co.
● Liveness
● No error messages
● Execution made visible
● Making data concrete
● Open source
● Remixing



Potential of agile methods
Agile methodologies seem to fit well for constructionist teams of learners:
● typically small groups of 4–8 co-workers;
● agile values: individuals and interactions over processes and tools; 

customer collaboration over contract negotiation; responding to change 
over following a plan; working software over comprehensive 
documentation;

● self-organizing and emphasis on the need of reflecting regularly on how to 
become more effective;

● pair programming, test driven development, iterative software 
development, continuous integration are very attractive for a learning 
context. 



Work is needed
● Learning to program often lacks deep constructionism. . .
● To set up effective constructionist activities educators and learners should 

probably be more aware of the so-called notional machines and be more 
explicit about the complex relationship between the code one writes and 
the actions that take place when the program is executed.

● Micro-patterns can be exploited in order to enhance problem solving skills 
of novice programmers, so that they become able to think about the 
solution of problems in the typical way that make the former suitable to 
automatic elaboration.

● Agile methodologies are constructivist by nature, with their stress on team 
working and emphasis on having running artifacts through all the 
development cycle, constructionist groups of learners can definitely 
benefit from them.



Sources
M. Monga, M. Lodi, D. Malchiodi, A. Morpurgo e B. Spieler, Learning to 
Program in a Constructionist Way, in V. Dagiene E. Jasute (Eds.), 
Constructionism 2018: Computational Thinking and Educational Innovation: 
conference proceedings, Vilnius University (ISBN 9786099576015), 906–929, 
2018, http://dx.doi.org/10.15388/ioi.2019.07
Lodi M., Malchiodi D., Monga M., Morpurgo A. e Spieler B., Constructionist 
Attempts at Supporting the Learning of Computer Programming: A Survey, 
Olympiads in Informatics 13 (2019), 99—121


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

