DUT STID, Université de la Cote d'Azur

Bases de données avancées

MongoDB et bases noSQL

Prof. Dario Malchiodi

UNIVERSITA DEGLI STUDI DI MILANO
DIPARTIMENTO DI INFORMATICA

SGBD

UNIVERSITE :25%
COTED'AZUR "-%+:-

Données organisées en termes de relations (qui signifie ensembles de tuples)

Entre les plus utilisés:
e Oracle

e MySQL

e PostgreSQL

e SQLite

Tuple {

Attribute
—

—_—
Relation

Pourquoi noSQL?

Parce que le monde réel n'est guere en ordre!

e Fréquemment, les données ne suivent pas un schéma prédéfini
e etcac'est plutot la regle dans le domaine de la data science

En plus, noSQL a des avantages tres intéréssants:

e utiliser directement des objéts complex/structurés
¢ extensibilité horizontale (sharding)
e robustesse en exploitant la redondance

Voila MongoDB

MongoDB (http://www.mongodb.com (http://www.mongodb.com)) est un SGBD noSQL open source orienté aux documents.

e Developpé dés 2007

e En production a partir de la version 1.4 (mars 2010)
e Derniére version stable: 4.0, publiée en october 2018
¢ (le nom fait référence a <humongous»)

Voila MongoDB

MongoDB a, quand méme, des points critiques:

e sesindex sont organisés en termes de structures données qui utilisent beaocoup de RAM
e les DB nécéssitent d'habitude plus space de disque dur que leurs homologues dans un SGBD classique
e iln'yapasunsuuport direct aux transactions, aux jointures, ...

In a SGBD classique

http://www.mongodb.com/

e UneBD est un ensemble de tables

e Une table est un ensemble de lignes

e Une ligne est une séquence de valeurs pour des attributes (fixés)
e Un schéma definis la structures des lignes dans une table

e On peut effectuer des jointures entre tables

In a SGBD elassigte orienté aux documents

e Une BD est un ensemble de tabtes collections
e Une tabte collection est un ensemble de tigrnes documents

o Ynetigre Un document est tre-séqtence-desvateurspotrdesattribttes{fixés} un ensemble (variable) des couples (nom, valeur)

On ne peut pas effectuer des jointures entre tables (bon, pas directement)

o Unschémadefinistastructure-destigre dans une table les lignes ne sont pas structurées

Réprésentation des données

¢ Dans une BD relationnelle les lignes sont codifiées comme une séquence de valeurs dont le type est fixé

e Can'est pas possible avec MongoDB, parce que il n'y a pas une structure prédéfinie pour les documents

e C'est pour ¢a que les documents sont réprésentés en utilisant le format JSON format

e JSON (JavaScript Object Notation, http://www.json.org (http://www.json.org)) est un format d'échange des données light, facile a lire (par les humains)
et a analyser syntactiquement (par les ordinateurs)

Light?

Tres simplement:
['one', '"two', 'three']

est bien plus simple que

http://www.json.org/

<array>
<element>one</element>
<element>two</element>
<element>three</element>
</array>

Réprésentation interne

MongoDB effectue le stockage en utilisant le format BSON format (Binary JSON, http://bsonspec.org/ (http://bsonspec.org)), concu pour:

e serialiser de facon efficace les documents JSON
e traverser aisement ces documents
e étre toujours light

Components de MongoDB

mongod serveur (en écoute sur le port 27017)
mongo client javascript
API pour Python, Java, Scala, Ruby, C, C++, ... (http://api.mongodb.org (http://api.mongodb.org))

installation https://docs.mongodb.com/manual/installation (https://docs.mongodb.com/manual/installation)

Exécution manuelle

http://bsonspec.org/
http://api.mongodb.org/
https://docs.mongodb.com/manual/installation

$ mongod --dbpath .
2018-05-28T08:47:04.813+0200 I CONTROL [initandlisten] MongoDB starting : pid=5172 port=27017 dbpath

$ mongo
MongoDB shell version: 3.6.5

Il nous faut des données

Voyons qui habite Donaldville

Opérations préliminaires

In [11]: import pymongo
client = pymongo.MongoClient('mongodb://localhost:27017/")
duckburg db = client.duckburg # silently creates db

In [12]: client.list database names() # it's empty, thus only default dbs will show up
Out[12]: ['admin', 'config', 'local']

In [13]: ducks = duckburg db.ducks # silently creates collection within db
duckburg db.list collection names() # it will not show up, either

Out[13]: T[]

Ajouter des documents dans une collection

La facon la plus facile d'insérer un document dans une BD est celle d'utiliser la méthode insert one

In [14]: r = ducks.insert one({'first name': 'Donald’,
‘last name': 'Duck’,
‘gender': 'M',
'car': {'model': 'American Bantam',

'license plate': 313},
'birth _year': 1920,
'first appearance': 1934})

In [15]: r

Out[15]: <pymongo.results.InsertOneResult at Ox7f9e400af608>

Laméthode insert one retourne un objet qui réunis des info sur le résultat

e acknowledged estun valeur booléen qui devient étala True quand l'écriture est terminée (il y aurait plus a dire sur ¢ca, mais nous ne le ferons pas)

In [16]:

Out[l6]:

In [17]:

Out[17]:

In [18]:

r.acknowledged

True

e inserted id estun attribut qui contient un ID univoque pour le document qui vient d'étre créé (on va détailler ca dans un moment)

r.inserted id

ObjectId('5c804c86fc4b1718037992f9")

Qu'est-ce qu'il s'est passé apres cette premiere écriture?

print(client.list database names())
print(duckburg db.list collection names())

['admin', 'config', 'duckburg', 'local']
['ducks"']

Quelques détails techniques

e Taille maximale des documents: 16MB
e |'opération d'insertion peut aussi se réaliser avec un upsert (on verra ca plus tard)

Ajoutons quelques documents a la BD

In [19]: characters = [

{'first name': 'Grandma', 'last name': 'Duck', 'gender': 'F',
‘car': {'model': 'Detroit Electric'},
'birth year': 1833, 'first appearance': 1943,
'hobbies': ['cooking', 'gardening'l},

{'first name': 'Scrooge', 'last name': 'McDuck', 'gender': 'M',
'birth year': 1867, 'first appearance': 1947,
"hobbies': ['finance', 'savings', 'swimming in money bins']},

{'first name': 'Gyro', 'last name': 'Gearloose', 'gender': 'M',
‘first appearance': 1952, 'hobbies': ['invention', 'study'l},
{'first name': 'Ludwig', 'last name': 'Von Drake', 'gender': 'M',

'first appearance': 1961, 'hobbies': ['study'l}
]

r = ducks.insert many(characters)
r
Out[19]: <pymongo.results.InsertManyResult at 0x7f9e400becc8>

In [20]: r.inserted ids

Out[20]: [ObjectId('5c804c97fc4b1718037992fa")
ObjectId('5c804c97fc4b1718037992fb")
ObjectId('5c804c97fc4b1718037992fc')
ObjectId('5c804c97fc4b1718037992fd")

Lire une collection |

’
’
’

In [21]: duck = ducks.find one()
duck

Out[21]: {' id': ObjectId('5c804c86fc4b1718037992f9"'),

'first name': 'Donald’,

'last name': 'Duck’,

‘gender': 'M',

‘car': {'model': 'American Bantam', 'license plate': 313},

'birth_year': 1920,
'first appearance': 1934}

ILn'y a aucune garantie sur lequel document sera obtenu!

Notez que le format JSON a été directement converti en un objet python, et donc on peut accéder au document en utilisant la syntaxe des dictionnaires
In [22]: duck['first name']

Out[22]: 'Donald!

C'est quoi _id? Et Objectid?

In [23]: ducks.find one()[' id']

Out[23]: ObjectId('5c804c86fc4b1718037992f9")

L'attribut id est automatiquement ajouté a chaque document; il contient un ID unique qui vient utilisé pour indexer les collections. MongoDB utilise pour
ca les objets de laclasse ObjectId

In [24]: from bson.objectid import ObjectId
[ObjectId(), ObjectId(), ObjectId()]

Out[24]: [ObjectId('5c804ca4fc4bl718037992fe"),
ObjectId('5c804cadfc4bl718037992ff"'),
ObjectId('5c804cadfc4bl171803799300')]

Lire une collection |l

La sélection de plusieurs documents qui correspondent a une requéte est faite avec la méthode find

In [25]: = ducks.find()

r
r
Out[25]: <pymongo.cursor.Cursor at 0x7f9e400ca470>

On va parler des curseurs dans une minute. Pour l'instant il suffit de dire que il peuvent étre converti en liste pour afficher les documents sélectionnés

In [26]: Llist(ducks.find())

Out[26]: [{' id': ObjectId('5c804c86fc4b1718037992f9"'),
"first name': 'Donald’,
‘last name': 'Duck’,
'gender': 'M',
‘car': {'model': 'American Bantam', 'license plate': 313},
‘birth_year': 1920,
'first appearance': 1934},
{' id': ObjectId('5c804c97fc4b1718037992fa"'),
"first name': 'Grandma',
'last name': 'Duck’,
‘gender': 'F',
"car': {'model': 'Detroit Electric'},
‘birth_year': 1833,
'first appearance': 1943,
"hobbies': ['cooking', 'gardening']},
{' id': ObjectId('5c804c97fc4b1718037992fb"),
‘first name': 'Scrooge’,
'last name': 'McDuck',
‘gender': 'M',
'birth year': 1867,
"first appearance': 1947,
'hobbies': ['finance', 'savings', 'swimming in money bins']},
{' id': ObjectId('5c804c97fc4b1718037992fc'),
‘first name': 'Gyro',
‘last name': 'Gearloose',
‘gender': 'M',
'first appearance': 1952,
"hobbies': ['invention', 'study'l},
{' id': ObjectId('5c804c97fc4b1718037992fd"),
'first name': 'Ludwig',
‘last name': 'Von Drake',
‘gender': 'M',
'first appearance': 1961,
"hobbies': ['study']}]

Un affichage plus compacte des documents

In [27]:

Out[27]:

In [28]:

Out[28]:

In [29]:

Out[29]:

In [30]:

Out[30]:

Ecrivons une fonction qui nous permet d'afficher les canard de facon plus compacte

def show duck(d):
try:
return '{0} {1}'.format(d['first name'], d['last name'])
except KeyError:
return d['first name']

show duck(duck)

'Donald Duck'

Lire une collection: selecteurs simples |

Basés sur l'existence de champs spécifiques
[show duck(d) for d in ducks.find({'car': {'$exists': True}})]

['Donald Duck', 'Grandma Duck']

Lire une collection: selecteurs simples I

Qui selectionnent des valeurs spécifiques

[show duck(d) for d in ducks.find({'gender': 'F'})]

['Grandma Duck"']

[show duck(d) for d in ducks.find({'first appearance': 1961})]

['Ludwig Von Drake']

Lire une collection: selecteurs simples lli

In [31]:

Out[31]:

In [32]:

Out[32]:

In [33]:

Out[33]:

In [34]:

Out[34]:

Basés sur une relation

[show duck(d) for d in ducks.find({'first appearance': {'$gt': 1950}})]
['Gyro Gearloose', 'Ludwig Von Drake']

Qui filtrent plusieurs valeurs pour un attribut

[show duck(d) for d in ducks.find({'first appearance': {'$in': [1947,
19611}})]

['Scrooge McDuck', 'Ludwig Von Drake']

Lire une collection: selecteurs complexes |

Conjunction logique (AND)

[show duck(d) for d in ducks.find({'first appearance': {'$lt': 1950},
‘gender': 'M'})]

['Donald Duck', 'Scrooge McDuck']

Disjunction logique (OR)

[show duck(d) for d in ducks.find({'$or': [{'birth year': {'$gt': 1900}},
{'gender': '"F'}I1})]

['Donald Duck', 'Grandma Duck']

Lire une collection: selecteurs complexes I

Basés sur le contenu d'un vecteur

In [35]:

Out[35]:

In [36]:

Out[36]:

In [37]:

Out[37]:

In [38]:

Out[38]:

In [39]:

Out[39]:

[show duck(d) for d in ducks.find({'hobbies': 'study'})]
['Gyro Gearloose', 'Ludwig Von Drake']

[show duck(d) for d in ducks.find({'hobbies': ['study']1})]
['Ludwig Von Drake']

[show duck(d) for d in ducks.find({'hobbies.1': 'study'})]

['Gyro Gearloose']

Lire une collection: selecteurs complexes Il

Basés sur documents incorporés
[show duck(d) for d in ducks.find({'car.model': 'American Bantam'})]

['Donald Duck']

Lire une collection: selecteurs complexes IV

Basés sur expressions réguliéres

import re
regx = re.compile("uck$", re.IGNORECASE)

[show duck(d) for d in ducks.find({'last name': regx})]

['Donald Duck', 'Grandma Duck', 'Scrooge McDuck']

Préter attention a la flexibilité

L'utilisation d'expressions régulieres, ainsique de $1t ou $gt , peut étre source d'inefficacités dans l'execution des requétes

Projections |

Implementées par un deuxieme argumentde find

e qui spécifie les attributs a montrer...

In [40]: Ulist(ducks.find({'hobbies.1': 'study'},
{'first name': 1, 'last name': 1}))

Out[40]: [{' id': ObjectId('5c804c97fc4b1718037992fc"),
"first name': 'Gyro',
'last name': 'Gearloose'}]

Projections Il

e ...ouceux aexclure

In [41]: Ulist(ducks.find({'hobbies.1': 'study'},
{' id': 0, 'gender': 0, 'birth year': 0,
'first appearance': 0, 'hobbies': 0}))

Out[41]: [{'first name': 'Gyro', 'last name': 'Gearloose'}]

Projections lli

e Selection et exclusion sont mutuellement exclusives
e Seule exception: l'attribut _1d peut toujours étre exclus:

In [42]:

OQut[42]:

In [43]:

Out[43]:

In [44]:

Out[44]:

list(ducks.find({'hobbies.1': ‘'study'},
{'first name': 1, 'last name': 1, ' id': 0}))

[{'first name': 'Gyro', 'last name': 'Gearloose'}]

Indexation |

Les collections peuvent étre indexées en spécifiant un ensemble d'attributs et le corréspondant ordre de tri

ducks.create index([('first name', pymongo.ASCENDING),
('first appearance', pymongo.DESCENDING)])

'first name 1 first appearance -1'

Indexation Il

Si une requéte est couverte par un index, ce qui signifie

e tous les attributs sur lesquels on effectue un filtre,
e ettous les attributs affichés

sont dans l'index, ceci vient automatiquement utilisé pour traverser les documents quand la requéte est exécutée.

regx = re.compile("~G.*", re.IGNORECASE)
list(ducks.find({'first name': regx, 'first appearance': {'$lt': 1955}},
{' id': 0, 'first name': 1, 'first appearance': 1}))

[{'first name': 'Grandma', 'first appearance': 1943},
{'first name': 'Gyro', 'first appearance': 1952}]

Curseurs

find retourne un curseurpour le résultat de la requéte, et ceci est accessible via

¢ l'invocation de la méthode next (jusqu'a StopIteration soit déclenchée)

In [45]: cursor = ducks.find()
try:
while True:
print(show duck(cursor.next()))
except StopIteration:
pass

Donald Duck
Grandma Duck
Scrooge McDuck
Gyro Gearloose
Ludwig Von Drake

e acces positionnel a la liste (aka [])

In [46]: cursor = ducks.find()
show duck(cursor[1])

OQut[46]: 'Grandma Duck'
In [47]: show duck(cursor[4])

Out[47]: 'Ludwig Von Drake'

(et on peut aussi remonter a l'arriére)

In [48]: show duck(cursor[2])

Out[48]: 'Scrooge McDuck'

e conversion a liste, boucle for

In [49]: cursor = ducks.find()

for d in cursor:
print(show duck(d))

Donald Duck
Grandma Duck
Scrooge McDuck
Gyro Gearloose
Ludwig Von Drake

e invocation des méthodes skip, limit, sort et count

In [50]: cursor = ducks.find().sort('last name', pymongo.DESCENDING)
for d in cursor:
print(show duck(d))

Ludwig Von Drake
Scrooge McDuck
Gyro Gearloose
Donald Duck
Grandma Duck

In [51]: cursor.rewind()

Out[51]: <pymongo.cursor.Cursor at 0x7f9e40056898>

La éthode update est mauvais!

In [52]: ducks.insert one({'first name': 'Magica', 'last name': 'De Spell’,
'first appearance': 1961})
ducks.update({'first name': 'Magica'}, {'first appearance': 2000})

/home/malchiodi/anaconda3/lib/python3.6/site-packages/ipykernel launcher.py:3: DeprecationWarning: update is
deprecated. Use replace one, update one or update many instead.
This is separate from the ipykernel package so we can avoid doing imports until

Out[52]: {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

Il estimportant de noter que:

¢ laméthode est obsoléte;
o elle retourne un dictionnaire (pas un objet) qui résume les résultats de ['operation

Vérifions si le document a été effectivement modifié:

In [53]: ducks.find one({'first name': 'Magica'})

In [54]: ducks.find one({'first appearance': 2000})

OQut[54]: {' id': ObjectId('5c804cfcfc4bl171803799301'), 'first appearance': 2000}

Donc cett forme (obsoléte) de update acompletement remplacé le document!

Solution

Uiliser les méthodes update one et update many enplacede update

In [55]: # OK, let's revert things
ducks.find one and delete({'first appearance': 2000})
ducks.insert one({'first name': 'Magica', 'last name': 'De Spell"’,
‘first appearance': 1961})

ducks.update one({'first name': 'Magica'}, {'first appearance': 2000})
ValueError Traceback (most recent call last)
<ipython-input-55-6a0ad72fdd9c> in <module>()

4 'first appearance': 1961})

5
----> 6 ducks.update one({'first name': 'Magica'}, {'first appearance': 2000})

~/anaconda3/lib/python3.6/site-packages/pymongo/collection.py in update one(self, filter, update, upsert, by
pass _document validation, collation, array filters, session)

983 e
984 common.validate is mapping("filter", filter)
--> 085 common.validate ok for update(update)
986 common.validate list or none('array filters', array filters)
987
~/anaconda3/1ib/python3.6/site-packages/pymongo/common.py in validate ok for update(update)
492 first = next(iter(update))
493 if not first.startswith('$"):
--> 494 raise ValueError('update only works with $ operators')
495
496

ValueError: update only works with $ operators

WTF(irst_appearance)?

e L'erreur est due au fait que ces méthodes ne permettent pas de remplacer entierement un document
e Aulieu de ¢a, elles imposent ['utilisation de $set , qui permet de modifier un ou plusieurs attributs sans rien toucher du reste du document

In [56]:

Out[56]:

In [57]:

In [58]:

Out[58]:

In [59]:

In [60]:

Out[60]:

r = ducks.update one({'first name': 'Magica'},
{'$set': {'first appearance': 2000}})
r

<pymongo.results.UpdateResult at 0x7f9e40053d08>

Aussi dans ce cas, l'opération retourne un objet qui réunit des infos sur le résultat:

n. of matched documents
print(r.matched count)

H*

n. of modified documents
r.modified count

None if no upsertion, id of created document otherwise
this deals with upsertions, will be explained later on
r.upserted id

®*

results in the update-style
r.raw_result

{'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

Maintenant on peut effectivement vérifier que la méthode se comporte comme prévu

In [61]: ducks.find one({'first name': 'Magica'})
OQut[61]: {' id': ObjectId('5c804d0ffc4b171803799302'),
"first name': 'Magica’,

‘last name': 'De Spell',
'first appearance': 2000}

update one va modifier un seul des documents identifiés (et on ne peut pas savoir lequel), update _many va les modifier tous.

Eliminer des couples

Ily a aussi la possibilité d'éliminer une couple clé/valeur dans un document, en utilisant l'operateur $unset .

In [62]: ducks.update one({'first name': 'Magica'},
{'$unset': {'first appearance': ''}})

Out[62]: <pymongo.results.UpdateResult at 0x7f9e4003d388>
In [63]: ducks.find one({'first name': 'Magica'})

Out[63]: {' id': ObjectId('5c804d0ffc4b171803799302"'),
‘first name': 'Magica’,
'last name': 'De Spell'}

Usage avancé des méthodes de modification

e $inc et $dec incrémentent and décrémentent respectivement une quantité numerique

e $push ajoute des éléments aux vecteurs

In [64]: ducks.update one({'first name': 'Gyro'}, {'$push': {'hobbies': 'lamps'}})
ducks.find one({'first name': 'Gyro'})

Out[64]: {' id': ObjectId('5c804c97fc4b1718037992fc"'),
"first name': 'Gyro',
'last name': 'Gearloose',
‘gender': 'M',
‘first _appearance': 1952,
"hobbies': ['invention',6 'study',6 'lamps']}

e $pop enléve le premier ou le dernier élément d'un vecteur
e $pull élimine toutes les occurrences d'un élément dans un vecteur

L'opérateur $

Quand on utilise les vecteurs, $ devient un opérateur spécial qui fait référence a la premiere occurrence d'une valeur trouvé en appliquant une requéte de

mise a jour

In [65]: ducks.update one({'hobbies': 'lamps'},
{'$set': {'hobbies.$': 'robotic lamps'}})
ducks.find one({'first name': 'Gyro'})['hobbies"']

Out[65]: ['invention', 'study', 'robotic lamps']

Usage avancé de $

L'operateur $ peut aussi étre utilisé pour se déplacer dans une hiérarchie. Supposez que un document contient la valeur suivante pour hobbies :

[{'name': 'invention', 'day': 'Monday'},
{'name': ‘'study', 'day': 'Friday'}]

La requéte de mise a jour suivante va modifier le jour pour le passe-temps study:

In [66]:

Out[66]:

In [67]:

Out[67]:

{{'hobbies.name': 'study'},
{'$set': {'hobbies.$.day': 'Tuesday'}}}

Upsert

Que va se passer si l'on essaie de mettre a jour un document qui n'existe pas?

e rien...
e ..saufsile parametre optionnel upsert=True estspécifié quand on appelle update one ou update many :dans ce cas l'effet de la requéte

est celui d'insérer un nouveau documentn (on appelle ca insert-upon-update oou upsert).

Eliminer...

e undes documents (s'ils exsistent) identifiés par une requéte (sans savoir lequel)

ducks.delete one({'first name': 'Ludwig'})

<pymongo.results.DeleteResult at 0x7f9e4003d988>

e tous les documents identifiés par une requéte

ducks.delete many({'first name': 'Ludwig'})

<pymongo.results.DeleteResult at 0x7f9e4003dbc8>

e tous les documents dans une collection

In [68]: ducks.delete many({})

Out[68]: <pymongo.results.DeleteResult at 0x7f9e4003dc88>

e une collection

In [69]: ducks.drop()

e uneBD

In [70]: client.drop database('duckburg')
or

duckburg db.command('dropDatabase')

Qut[70]: {'ok': 1.0}

Jointures et extensibilité (scalability)

e Dans MongoDB l'extensibilité exploite le sharding, qui signifie distribuer et dupliquer les données sur plusierurs ordinateurs
e Cepedant, ¢ca ne permet pas d'effectuer automatiquement des jointures

Jointures faites maison |

On peut utiliser ObjectId pourrécréer ala main les jointures un-a-plusieurs...

In []: donald id = ducks.find one({'first name': 'Donald'})[' id']
for d in ['Huey', 'Dewey', 'Louie']:
ducks.insert one({'first name': d, 'uncle': donald id})

...au prix de devoir effectuer une requéte additionnelle (dans ce cas, pour pouvoir récuperer l'oncle).

Jointures faites maison Il

On peut implémenter les jointures plusieurs-a-plusieurs
e avec des vecteurs

ducks.insert one({

'first name': 'Donald’,

‘last name': 'Duck’,

'relatives': [ObjectId('516405b8b356cd6125b74e89"),
ObjectId('516405b8b356cd6125b74e8a'),
ObjectId('516405b8b356cd6125b74e8b')]})

ducks.find ({

‘relatives': ObjectId('516405b8b356cd6125b74e8a"')})

e oudes documentsincorporés

ducks.insert one({

‘first name': 'Donald’,
'last name': 'Duck’,
'relatives': [{'first name': 'Huey'},
{'first name': 'Dewey'},
{'first name': 'Louie'}]})
ducks.find one({'relatives.first name': 'Dewey'})

Denormalisation

e ils'agit d'une solution possible (faut pas toujours diaboliser la redondance)

e limite critique: la taille maximale pour un document est de 16 MBytes

e (note de cOté: le texte entier du Hamlet de Shakespeare n'occupe que 200 Kbytes, donc on peut mémoriser dans un document 'équivalent de environs
80 livres)

e le vrai prix a payer est plutét celui de devoir effetuer un nombre plus haut de requétes (comme par exemple quand il faut mettre a jour des données qui
sont dupliqués)

Map-reduce

resource date
index Jan 20 2010 4:30
index Jan 20 2010 5:30
about Jan 20 2010 6:00
index Jan 20 2010 7:00
about Jan 21 2010 8:00
about Jan 21 2010 8:30
index Jan 21 2010 8:30
about Jan 21 2010 9:00
index Jan 21 2010 9:30
index Jan 22 2010 5:00
A partir de ces données...
Map-reduce
...nous voulons obtenir
resource year month day count
index 2010 1 20 3
about 2010 1 20 1
about 2010 1 21 3
index 2010 1 21 2
index 2010 1 22 1

On va utiliser un algorithme map-reduce ou

e pour chaque clé (ressource, date) map va émettre la valeur 1
e reducesommes les valeurs

In [108]:

Map-reduce

Pour faire ¢a, il nous faut tout d'abord insérer les données dans la BD

import datetime

ducks.hits.insert one({'resource':

ducks.

ducks.

ducks.

ducks.

ducks.

ducks.

ducks

= ducks.hits.insert one({'resource':
'date': datetime.datetime(2010,

hits.insert one({'resource':
hits.insert one({'resource':
hits.insert one({'resource':
hits.insert one({'resource':
hits.insert one({'resource':
hits.insert one({'resource':

.hits.insert one({'resource':

"index',

'date': datetime.datetime (2010,
'"index',

'date': datetime.datetime (2010,
"about',

'date': datetime.datetime (2010,
"index',

'date': datetime.datetime(2010,
"about',

'date': datetime.datetime (2010,
"index',

'date': datetime.datetime (2010,
"about',

'date': datetime.datetime(2010,
"index',

'date': datetime.datetime (2010,

'index',

Map-reduce

20,
20,
20,
20,
21,
21,
21,
21,

1,

4, 30, 0, 0)})
5, 30, 0, 0)})
6, 0, 0, 0)})
7, 0, 6, 0)})
8, 0, 6, 0)})
8, 30, 0, 0)})
9, 0, 6, 0)})
9, 30, 0, 0)})

22, 5, 0, 0, 0)})

Afin de pouvoir lancer un job map-reduce, il faut écrire les fonctions map et reduce (en javascript!)

In [109]: from bson.code import Code

map = Code('''function() {
var key = {
resource: this.resource,
year: this.date.getFullYear(),
month: this.date.getMonth(),
day: this.date.getDate()
b
emit(key, {count: 1});
)

Map-reduce

Afin de pouvoir lancer un job map-reduce, il faut écrire les fonctions map et reduce (en javascript!)

In [110]: reduce = Code('''function(key, values) {
var sum = 0;
values.forEach(function(value) {

sum += value['count'];
});
return {count: sum};

FY)

Map-reduce

Le reste est automatiquement géré par MongoDB

In [111]: result = ducks.hits.map reduce(map, reduce, 'hit stats')
result

Out[111]: Collection(Database(MongoClient(host=['mongodb:27017'], document class=dict, tz aware=False, connect=True),
‘duckburg'), 'hit stats')

In [112]: for doc in result.find():

print(doc)
{' id': {'resource': 'about', 'year': 2010.0, 'month': 0.0, 'day': 20.0}, ‘'value': {'count': 1.0}}
{' id': {'resource': 'about', 'year': 2010.0, 'month': 0.0, 'day': 21.0}, ‘'value': {'count': 2.0}}
{' id': {'resource': 'index', 'year': 2010.0, 'month': 0.0, 'day': 20.0}, ‘'value': {'count': 3.0}}
{' id': {'resource': 'index', 'year': 2010.0, 'month': 0.0, 'day': 21.0}, ‘'value': {'count': 2.0}}
{' id': {'resource': 'index', ‘'year': 2010.0, 'month': 0.0, 'day': 22.0}, ‘'value': {'count': 1.0}}

In []:

