
DUT STID, Université de la Côte d'AzurDUT STID, Université de la Côte d'Azur

Bases de données avancéesBases de données avancées

MongoDB et bases noSQLMongoDB et bases noSQL

Prof. Dario MalchiodiProf. Dario Malchiodi

Oracle
MySQL
PostgreSQL
SQLite

SGBDSGBD
Données organisées en termes de relations (qui signifie ensembles de tuples)

Entre les plus utilisés:

Pourquoi noSQL?Pourquoi noSQL?
Parce que le monde réel n'est guère en ordre!

Fréquemment, les données ne suivent pasne suivent pas un schéma prédéfini
et ça c'est plutôt la règle dans le domaine de la data science

En plus, noSQL a des avantages très intéréssants:

utiliser directement des objéts complex/structurés
extensibilité horizontale (sharding)
robustesse en exploitant la redondance

Voilà MongoDBVoilà MongoDB
MongoDB (http://www.mongodb.com (http://www.mongodb.com)) est un SGBD noSQL open source orienté aux documentsorienté aux documents.

Developpé dès 2007
En production à partir de la version 1.4 (mars 2010)
Dernière version stable: 4.0, publiée en october 2018
(le nom fait référence à «humongous»)

Voilà MongoDBVoilà MongoDB
MongoDB a, quand même, des points critiques:

ses index sont organisés en termes de structures données qui utilisent beaocoup de RAM
les DB nécéssitent d'habitude plus space de disque dur que leurs homologues dans un SGBD classique
il n'y a pas un suuport direct aux transactions, aux jointures, ...

In a SGBD classiqueIn a SGBD classique

http://www.mongodb.com/

Une BD est un ensemble de tables
Une table est un ensemble de lignes
Une ligne est une séquence de valeurs pour des attributes (fixés)
Un schémaschéma definis la structures des lignes dans une table
On peut e�ectuer des jointures entre tables

In a SGBD In a SGBD classiqueclassique orienté aux documents orienté aux documents
Une BD est un ensemble de tables collections
Une table collection est un ensemble de lignes documents
Une ligne Un document est une séquence des valeurs pour des attributes (fixés) un ensemble (variable) des couples (nom, valeur)
On ne peut pasne peut pas e�ectuer des jointures entre tables (bon, pas directement)
Un schémaschéma definis la structure des ligne dans une table les lignes ne sont pas structurées

Réprésentation des donnéesRéprésentation des données
Dans une BD relationnelle les lignes sont codifiées comme une séquence de valeurs dont le type est fixé
Ça n'est pas possible avec MongoDB, parce que il n'y a pas une structure prédéfinie pour les documents
C'est pour ça que les documents sont réprésentés en utilisant le format JSON format
JSON (JavaScript Object Notation, http://www.json.org (http://www.json.org)) est un format d'échange des données light, facile à lire (par les humains)
et à analyser syntactiquement (par les ordinateurs)

Light?Light?
Très simplement:

['one', 'two', 'three']

est bien plus simple que

http://www.json.org/

<array>

 <element>one</element>

 <element>two</element>

 <element>three</element>

</array>

Réprésentation interneRéprésentation interne
MongoDB e�ectue le stockage en utilisant le format BSON format (Binary JSON, http://bsonspec.org/ (http://bsonspec.org)), conçu pour:

serialiser de façon e�icace les documents JSON
traverser aisement ces documents
être toujours light

Components de MongoDBComponents de MongoDB
mongod serveur (en écoute sur le port 27017)

mongo client javascript

API pour Python, Java, Scala, Ruby, C, C++, ... (http://api.mongodb.org (http://api.mongodb.org))

installation https://docs.mongodb.com/manual/installation (https://docs.mongodb.com/manual/installation)

Exécution manuelleExécution manuelle

http://bsonspec.org/
http://api.mongodb.org/
https://docs.mongodb.com/manual/installation

$ mongod --dbpath .

2018-05-28T08:47:04.813+0200 I CONTROL [initandlisten] MongoDB starting : pid=5172 port=27017 dbpath

=. ...

...

$ mongo

MongoDB shell version: 3.6.5

...

>

Il nous faut des donnéesIl nous faut des données
Voyons qui habite Donaldville

Opérations préliminairesOpérations préliminaires

In [11]:

In [12]:

In [13]:

Ajouter des documents dans une collectionAjouter des documents dans une collection
La façon la plus facile d'insérer un document dans une BD est celle d'utiliser la méthode insert_one

In [14]:

In [15]:

La méthode insert_one retourne un objet qui réunis des info sur le résultat

acknowledged est un valeur booléen qui devient étal à True quand l'écriture est terminée (il y aurait plus à dire sur ça, mais nous ne le ferons pas)

Out[12]: ['admin', 'config', 'local']

Out[13]: []

Out[15]: <pymongo.results.InsertOneResult at 0x7f9e400af608>

import pymongo

client = pymongo.MongoClient('mongodb://localhost:27017/')

duckburg_db = client.duckburg # silently creates db

client.list_database_names() # it's empty, thus only default dbs will show up

ducks = duckburg_db.ducks # silently creates collection within db

duckburg_db.list_collection_names() # it will not show up, either

r = ducks.insert_one({'first_name': 'Donald',

 'last_name': 'Duck',

 'gender': 'M',

 'car': {'model': 'American Bantam',

 'license_plate': 313},

 'birth_year': 1920,

 'first_appearance': 1934})

r

In [16]:

inserted_id est un attribut qui contient un ID univoque pour le document qui vient d'être créé (on va détailler ça dans un moment)

In [17]:

Qu'est-ce qu'il s'est passé après cette première écriture?Qu'est-ce qu'il s'est passé après cette première écriture?
In [18]:

Quelques détails techniquesQuelques détails techniques
Taille maximale des documents: 16MB
L'opération d'insertion peut aussi se réaliser avec un upsert (on verra ça plus tard)

Ajoutons quelques documents à la BDAjoutons quelques documents à la BD

Out[16]: True

Out[17]: ObjectId('5c804c86fc4b1718037992f9')

['admin', 'config', 'duckburg', 'local']

['ducks']

r.acknowledged

r.inserted_id

print(client.list_database_names())

print(duckburg_db.list_collection_names())

In [19]:

In [20]:

Lire une collection ILire une collection I

Out[19]: <pymongo.results.InsertManyResult at 0x7f9e400becc8>

Out[20]: [ObjectId('5c804c97fc4b1718037992fa'),

 ObjectId('5c804c97fc4b1718037992fb'),

 ObjectId('5c804c97fc4b1718037992fc'),

 ObjectId('5c804c97fc4b1718037992fd')]

characters = [

 {'first_name': 'Grandma', 'last_name': 'Duck', 'gender': 'F',

 'car': {'model': 'Detroit Electric'},

 'birth_year': 1833, 'first_appearance': 1943,

 'hobbies': ['cooking', 'gardening']},

 {'first_name': 'Scrooge', 'last_name': 'McDuck', 'gender': 'M',

 'birth_year': 1867, 'first_appearance': 1947,

 'hobbies': ['finance', 'savings', 'swimming in money bins']},

 {'first_name': 'Gyro', 'last_name': 'Gearloose', 'gender': 'M',

 'first_appearance': 1952, 'hobbies': ['invention', 'study']},

 {'first_name': 'Ludwig', 'last_name': 'Von Drake', 'gender': 'M',

 'first_appearance': 1961, 'hobbies': ['study']}

]

r = ducks.insert_many(characters)

r

r.inserted_ids

In [21]:

Il n'y a aucune garantie sur lequel document sera obtenu!

Notez que le format JSON a été directement converti en un objet python, et donc on peut accéder au document en utilisant la syntaxe des dictionnaires

In [22]:

C'est quoi _id? Et ObjectId?C'est quoi _id? Et ObjectId?
In [23]:

L'attribut _id est automatiquement ajouté à chaque document; il contient un ID unique qui vient utilisé pour indexer les collections. MongoDB utilise pour
ça les objets de la classe ObjectId

Out[21]: {'_id': ObjectId('5c804c86fc4b1718037992f9'),

 'first_name': 'Donald',

 'last_name': 'Duck',

 'gender': 'M',

 'car': {'model': 'American Bantam', 'license_plate': 313},

 'birth_year': 1920,

 'first_appearance': 1934}

Out[22]: 'Donald'

Out[23]: ObjectId('5c804c86fc4b1718037992f9')

duck = ducks.find_one()

duck

duck['first_name']

ducks.find_one()['_id']

In [24]:

Lire une collection IILire une collection II
La sélection de plusieurs documents qui correspondent à une requête est faite avec la méthode find

In [25]:

On va parler des curseurs dans une minute. Pour l'instant il su�it de dire que il peuvent être converti en liste pour a�icher les documents sélectionnés

Out[24]: [ObjectId('5c804ca4fc4b1718037992fe'),

 ObjectId('5c804ca4fc4b1718037992ff'),

 ObjectId('5c804ca4fc4b171803799300')]

Out[25]: <pymongo.cursor.Cursor at 0x7f9e400ca470>

from bson.objectid import ObjectId

[ObjectId(), ObjectId(), ObjectId()]

r = ducks.find()

r

In [26]:

Un a�ichage plus compacte des documentsUn a�ichage plus compacte des documents

Out[26]: [{'_id': ObjectId('5c804c86fc4b1718037992f9'),

 'first_name': 'Donald',

 'last_name': 'Duck',

 'gender': 'M',

 'car': {'model': 'American Bantam', 'license_plate': 313},

 'birth_year': 1920,

 'first_appearance': 1934},

 {'_id': ObjectId('5c804c97fc4b1718037992fa'),

 'first_name': 'Grandma',

 'last_name': 'Duck',

 'gender': 'F',

 'car': {'model': 'Detroit Electric'},

 'birth_year': 1833,

 'first_appearance': 1943,

 'hobbies': ['cooking', 'gardening']},

 {'_id': ObjectId('5c804c97fc4b1718037992fb'),

 'first_name': 'Scrooge',

 'last_name': 'McDuck',

 'gender': 'M',

 'birth_year': 1867,

 'first_appearance': 1947,

 'hobbies': ['finance', 'savings', 'swimming in money bins']},

 {'_id': ObjectId('5c804c97fc4b1718037992fc'),

 'first_name': 'Gyro',

 'last_name': 'Gearloose',

 'gender': 'M',

 'first_appearance': 1952,

 'hobbies': ['invention', 'study']},

 {'_id': ObjectId('5c804c97fc4b1718037992fd'),

 'first_name': 'Ludwig',

 'last_name': 'Von Drake',

 'gender': 'M',

 'first_appearance': 1961,

 'hobbies': ['study']}]

list(ducks.find())

Écrivons une fonction qui nous permet d'a�icher les canard de façon plus compacte

In [27]:

Lire une collection: selecteurs simples ILire une collection: selecteurs simples I
Basés sur l'existence de champs spécifiques

In [28]:

Lire une collection: selecteurs simples IILire une collection: selecteurs simples II
Qui selectionnent des valeurs spécifiques

In [29]:

In [30]:

Lire une collection: Lire une collection: selecteurs simples IIIselecteurs simples III

Out[27]: 'Donald Duck'

Out[28]: ['Donald Duck', 'Grandma Duck']

Out[29]: ['Grandma Duck']

Out[30]: ['Ludwig Von Drake']

def show_duck(d):

 try:

 return '{0} {1}'.format(d['first_name'], d['last_name'])

 except KeyError:

 return d['first_name']

show_duck(duck)

[show_duck(d) for d in ducks.find({'car': {'$exists': True}})]

[show_duck(d) for d in ducks.find({'gender': 'F'})]

[show_duck(d) for d in ducks.find({'first_appearance': 1961})]

Basés sur une relation

In [31]:

Qui filtrent plusieurs valeurs pour un attribut

In [32]:

Lire une collection: selecteurs complexes ILire une collection: selecteurs complexes I
Conjunction logique (AND)

In [33]:

Disjunction logique (OR)

In [34]:

Lire une collection: selecteurs complexes IILire une collection: selecteurs complexes II
Basés sur le contenu d'un vecteur

Out[31]: ['Gyro Gearloose', 'Ludwig Von Drake']

Out[32]: ['Scrooge McDuck', 'Ludwig Von Drake']

Out[33]: ['Donald Duck', 'Scrooge McDuck']

Out[34]: ['Donald Duck', 'Grandma Duck']

[show_duck(d) for d in ducks.find({'first_appearance': {'$gt': 1950}})]

[show_duck(d) for d in ducks.find({'first_appearance': {'$in': [1947,

 1961]}})]

[show_duck(d) for d in ducks.find({'first_appearance': {'$lt': 1950},

 'gender': 'M'})]

[show_duck(d) for d in ducks.find({'$or': [{'birth_year': {'$gt': 1900}},

 {'gender': 'F'}]})]

In [35]:

In [36]:

In [37]:

Lire une collection: selecteurs complexes IIILire une collection: selecteurs complexes III
Basés sur documents incorporés

In [38]:

Lire une collection: selecteurs complexes IVLire une collection: selecteurs complexes IV
Basés sur expressions régulières

In [39]:

Prêter attention à la flexibilitéPrêter attention à la flexibilité

Out[35]: ['Gyro Gearloose', 'Ludwig Von Drake']

Out[36]: ['Ludwig Von Drake']

Out[37]: ['Gyro Gearloose']

Out[38]: ['Donald Duck']

Out[39]: ['Donald Duck', 'Grandma Duck', 'Scrooge McDuck']

[show_duck(d) for d in ducks.find({'hobbies': 'study'})]

[show_duck(d) for d in ducks.find({'hobbies': ['study']})]

[show_duck(d) for d in ducks.find({'hobbies.1': 'study'})]

[show_duck(d) for d in ducks.find({'car.model': 'American Bantam'})]

import re

regx = re.compile("uck$", re.IGNORECASE)

[show_duck(d) for d in ducks.find({'last_name': regx})]

L'utilisation d'expressions régulières, ainsi que de $lt ou $gt , peut être source d'ine�icacités dans l'execution des requêtes

Projections IProjections I
Implementées par un deuxième argument de find

qui spécifie les attributs à montrer...

In [40]:

Projections IIProjections II
...ou ceux à exclure

In [41]:

Projections IIIProjections III
Selection et exclusion sont mutuellement exclusives
Seule exception: l'attribut _id peut toujours être exclus:

Out[40]: [{'_id': ObjectId('5c804c97fc4b1718037992fc'),

 'first_name': 'Gyro',

 'last_name': 'Gearloose'}]

Out[41]: [{'first_name': 'Gyro', 'last_name': 'Gearloose'}]

list(ducks.find({'hobbies.1': 'study'},

 {'first_name': 1, 'last_name': 1}))

list(ducks.find({'hobbies.1': 'study'},

 {'_id': 0, 'gender': 0, 'birth_year': 0,

 'first_appearance': 0, 'hobbies': 0}))

In [42]:

Indexation IIndexation I
Les collections peuvent être indexées en spécifiant un ensemble d'attributs et le corréspondant ordre de tri

In [43]:

Indexation IIIndexation II
Si une requête est couverte par un index, ce qui signifie

tous les attributs sur lesquels on e�ectue un filtre,
et tous les attributs a�ichés

sont dans l'index, ceci vient automatiquement utilisé pour traverser les documents quand la requête est exécutée.

In [44]:

CurseursCurseurs
find retourne un curseur pour le résultat de la requête, et ceci est accessible via

Out[42]: [{'first_name': 'Gyro', 'last_name': 'Gearloose'}]

Out[43]: 'first_name_1_first_appearance_-1'

Out[44]: [{'first_name': 'Grandma', 'first_appearance': 1943},

 {'first_name': 'Gyro', 'first_appearance': 1952}]

list(ducks.find({'hobbies.1': 'study'},

 {'first_name': 1, 'last_name': 1, '_id': 0}))

ducks.create_index([('first_name', pymongo.ASCENDING),

 ('first_appearance', pymongo.DESCENDING)])

regx = re.compile("^G.*", re.IGNORECASE)

list(ducks.find({'first_name': regx, 'first_appearance': {'$lt': 1955}},

 {'_id': 0, 'first_name': 1, 'first_appearance': 1}))

l'invocation de la méthode next (jusqu'à StopIteration soit déclenchée)

In [45]:

accès positionnel à la liste (aka [])

In [46]:

In [47]:

(et on peut aussi remonter à l'arrière)

In [48]:

conversion a liste, boucle for

Donald Duck

Grandma Duck

Scrooge McDuck

Gyro Gearloose

Ludwig Von Drake

Out[46]: 'Grandma Duck'

Out[47]: 'Ludwig Von Drake'

Out[48]: 'Scrooge McDuck'

cursor = ducks.find()

try:

 while True:

 print(show_duck(cursor.next()))

except StopIteration:

 pass

cursor = ducks.find()

show_duck(cursor[1])

show_duck(cursor[4])

show_duck(cursor[2])

In [49]:

invocation des méthodes skip , limit , sort et count

In [50]:

In [51]:

La éthode La éthode update est mauvais! est mauvais!

Donald Duck

Grandma Duck

Scrooge McDuck

Gyro Gearloose

Ludwig Von Drake

Ludwig Von Drake

Scrooge McDuck

Gyro Gearloose

Donald Duck

Grandma Duck

Out[51]: <pymongo.cursor.Cursor at 0x7f9e40056898>

cursor = ducks.find()

for d in cursor:

 print(show_duck(d))

cursor = ducks.find().sort('last_name', pymongo.DESCENDING)

for d in cursor:

 print(show_duck(d))

cursor.rewind()

In [52]:

Il est important de noter que:

la méthode est obsolète;
elle retourne un dictionnaire (pas un objet) qui résume les résultats de l'operation

Vérifions si le document a été e�ectivement modifié:

In [53]:

In [54]:

Donc cett forme (obsolète) de update a complètement remplacé le document!

SolutionSolution
Uiliser les méthodes update_one et update_many en place de update

/home/malchiodi/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: DeprecationWarning: update is

deprecated. Use replace_one, update_one or update_many instead.

 This is separate from the ipykernel package so we can avoid doing imports until

Out[52]: {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

Out[54]: {'_id': ObjectId('5c804cfcfc4b171803799301'), 'first_appearance': 2000}

ducks.insert_one({'first_name': 'Magica', 'last_name': 'De Spell',

 'first_appearance': 1961})

ducks.update({'first_name': 'Magica'}, {'first_appearance': 2000})

ducks.find_one({'first_name': 'Magica'})

ducks.find_one({'first_appearance': 2000})

In [55]:

WTF(irst_appearance)?WTF(irst_appearance)?
L'erreur est due au fait que ces méthodes ne permettent pas de remplacer entierement un document
Au lieu de ça, elles imposent l'utilisation de $set , qui permet de modifier un ou plusieurs attributs sans rien toucher du reste du document

ValueError Traceback (most recent call last)

<ipython-input-55-6a0ad72fdd9c> in <module>()

 4 'first_appearance': 1961})

 5

----> 6 ducks.update_one({'first_name': 'Magica'}, {'first_appearance': 2000})

~/anaconda3/lib/python3.6/site-packages/pymongo/collection.py in update_one(self, filter, update, upsert, by

pass_document_validation, collation, array_filters, session)

 983 """

 984 common.validate_is_mapping("filter", filter)

--> 985 common.validate_ok_for_update(update)

 986 common.validate_list_or_none('array_filters', array_filters)

 987

~/anaconda3/lib/python3.6/site-packages/pymongo/common.py in validate_ok_for_update(update)

 492 first = next(iter(update))

 493 if not first.startswith('$'):

--> 494 raise ValueError('update only works with $ operators')

 495

 496

ValueError: update only works with $ operators

OK, let's revert things

ducks.find_one_and_delete({'first_appearance': 2000})

ducks.insert_one({'first_name': 'Magica', 'last_name': 'De Spell',

 'first_appearance': 1961})

ducks.update_one({'first_name': 'Magica'}, {'first_appearance': 2000})

In [56]:

Aussi dans ce cas, l'opération retourne un objet qui réunit des infos sur le résultat:

In [57]:

In [58]:

In [59]:

In [60]:

Maintenant on peut e�ectivement vérifier que la méthode se comporte comme prévu

Out[56]: <pymongo.results.UpdateResult at 0x7f9e40053d08>

1

Out[58]: 1

Out[60]: {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

r = ducks.update_one({'first_name': 'Magica'},

 {'$set': {'first_appearance': 2000}})

r

n. of matched documents

print(r.matched_count)

n. of modified documents

r.modified_count

None if no upsertion, id of created document otherwise

this deals with upsertions, will be explained later on

r.upserted_id

results in the update-style

r.raw_result

In [61]:

update_one va modifier un seul des documents identifiés (et on ne peut pas savoir lequel), update_many va les modifier tous.

Éliminer des couplesÉliminer des couples
Il y a aussi la possibilité d'éliminer une couple clé/valeur dans un document, en utilisant l'operateur $unset .

In [62]:

In [63]:

Usage avancé des méthodes de modificationUsage avancé des méthodes de modification
$inc et $dec incrémentent and décrémentent respectivement une quantité numerique
$push ajoute des éléments aux vecteurs

Out[61]: {'_id': ObjectId('5c804d0ffc4b171803799302'),

 'first_name': 'Magica',

 'last_name': 'De Spell',

 'first_appearance': 2000}

Out[62]: <pymongo.results.UpdateResult at 0x7f9e4003d388>

Out[63]: {'_id': ObjectId('5c804d0ffc4b171803799302'),

 'first_name': 'Magica',

 'last_name': 'De Spell'}

ducks.find_one({'first_name': 'Magica'})

ducks.update_one({'first_name': 'Magica'},

 {'$unset': {'first_appearance': ''}})

ducks.find_one({'first_name': 'Magica'})

In [64]:

$pop enlève le premier ou le dernier élément d'un vecteur
$pull élimine toutes les occurrences d'un élément dans un vecteur

L'opérateur L'opérateur $
Quand on utilise les vecteurs, $ devient un opérateur spécial qui fait référence à la première occurrence d'une valeur trouvé en appliquant une requête de
mise à jour

In [65]:

Usage avancé de Usage avancé de $
L'operateur $ peut aussi être utilisé pour se déplacer dans une hiérarchie. Supposez que un document contient la valeur suivante pour hobbies :

[{'name': 'invention', 'day': 'Monday'},

{'name': 'study', 'day': 'Friday'}]

La requête de mise à jour suivante va modifier le jour pour le passe-temps study:

Out[64]: {'_id': ObjectId('5c804c97fc4b1718037992fc'),

 'first_name': 'Gyro',

 'last_name': 'Gearloose',

 'gender': 'M',

 'first_appearance': 1952,

 'hobbies': ['invention', 'study', 'lamps']}

Out[65]: ['invention', 'study', 'robotic lamps']

ducks.update_one({'first_name': 'Gyro'}, {'$push': {'hobbies': 'lamps'}})

ducks.find_one({'first_name': 'Gyro'})

ducks.update_one({'hobbies': 'lamps'},

 {'$set': {'hobbies.$': 'robotic lamps'}})

ducks.find_one({'first_name': 'Gyro'})['hobbies']

{{'hobbies.name': 'study'},

{'$set': {'hobbies.$.day': 'Tuesday'}}}

UpsertUpsert
Que va se passer si l'on essaie de mettre à jour un document qui n'existe pas?

rien...
...sauf si le paramètre optionnel upsert=True est spécifié quand on appelle update_one ou update_many : dans ce cas l'e�et de la requête
est celui d'insérer un nouveau documentn (on appelle ça insert-upon-update oou upsert).

Éliminer...Éliminer...
un des documents (s'ils exsistent) identifiés par une requête (sans savoir lequel)

In [66]:

tous les documents identifiés par une requête

In [67]:

tous les documents dans une collection

Out[66]: <pymongo.results.DeleteResult at 0x7f9e4003d988>

Out[67]: <pymongo.results.DeleteResult at 0x7f9e4003dbc8>

ducks.delete_one({'first_name': 'Ludwig'})

ducks.delete_many({'first_name': 'Ludwig'})

In [68]:

une collection

In [69]:

une BD

In [70]:

Jointures et extensibilité (scalability)Jointures et extensibilité (scalability)
Dans MongoDB l'extensibilité exploite le shardingsharding, qui signifie distribuer et dupliquer les données sur plusierurs ordinateurs
Cepedant, ça ne permet pas d'e�ectuer automatiquement des jointures

Jointures faites maison IJointures faites maison I
On peut utiliser ObjectId pour récréer à la main les jointures un-à-plusieurs...

In []:

Out[68]: <pymongo.results.DeleteResult at 0x7f9e4003dc88>

Out[70]: {'ok': 1.0}

ducks.delete_many({})

ducks.drop()

client.drop_database('duckburg')

or

duckburg_db.command('dropDatabase')

donald_id = ducks.find_one({'first_name': 'Donald'})['_id']

for d in ['Huey', 'Dewey', 'Louie']:

 ducks.insert_one({'first_name': d, 'uncle': donald_id})

...au prix de devoir e�ectuer une requête additionnelle (dans ce cas, pour pouvoir récuperer l'oncle).

Jointures faites maison IIJointures faites maison II
On peut implémenter les jointures plusieurs-à-plusieurs

avec des vecteurs

ducks.insert_one({

 'first_name': 'Donald',

 'last_name': 'Duck',

 'relatives': [ObjectId('516405b8b356cd6125b74e89'),

 ObjectId('516405b8b356cd6125b74e8a'),

 ObjectId('516405b8b356cd6125b74e8b')]})

ducks.find({

 'relatives': ObjectId('516405b8b356cd6125b74e8a')})

ou des documents incorporés

ducks.insert_one({

 'first_name': 'Donald',

 'last_name': 'Duck',

 'relatives': [{'first_name': 'Huey'},

 {'first_name': 'Dewey'},

 {'first_name': 'Louie'}]})

ducks.find_one({'relatives.first_name': 'Dewey'})

DenormalisationDenormalisation
il s'agit d'une solution possible (faut pas toujours diaboliser la redondance)
limite critique: la taille maximale pour un document est de 16 MBytes
(note de côté: le texte entier du Hamlet de Shakespeare n'occupe que 200 Kbytes, donc on peut mémoriser dans un document l'équivalent de environs
80 livres)

le vrai prix à payer est plutôt celui de devoir e�etuer un nombre plus haut de requêtes (comme par exemple quand il faut mettre à jour des données qui
sont dupliqués)

Map-reduceMap-reduce
resource date

index Jan 20 2010 4:30

index Jan 20 2010 5:30

about Jan 20 2010 6:00

index Jan 20 2010 7:00

about Jan 21 2010 8:00

about Jan 21 2010 8:30

index Jan 21 2010 8:30

about Jan 21 2010 9:00

index Jan 21 2010 9:30

index Jan 22 2010 5:00

À partir de ces données...

Map-reduceMap-reduce
...nous voulons obtenir

resource year month day count

index 2010 1 20 3

about 2010 1 20 1

about 2010 1 21 3

index 2010 1 21 2

index 2010 1 22 1

On va utiliser un algorithme map-reduce où

pour chaque clé (ressource, date) map va émettre la valeur 1
reduce sommes les valeurs

Map-reduceMap-reduce
Pour faire ça, il nous faut tout d'abord insérer les données dans la BD

In [108]:

Map-reduceMap-reduce
Afin de pouvoir lancer un job map-reduce, il faut écrire les fonctions map et reduce (en javascript!)

import datetime

ducks.hits.insert_one({'resource': 'index',

 'date': datetime.datetime(2010, 1, 20, 4, 30, 0, 0)})

ducks.hits.insert_one({'resource': 'index',

 'date': datetime.datetime(2010, 1, 20, 5, 30, 0, 0)})

ducks.hits.insert_one({'resource': 'about',

 'date': datetime.datetime(2010, 1, 20, 6, 0, 0, 0)})

ducks.hits.insert_one({'resource': 'index',

 'date': datetime.datetime(2010, 1, 20, 7, 0, 0, 0)})

ducks.hits.insert_one({'resource': 'about',

 'date': datetime.datetime(2010, 1, 21, 8, 0, 0, 0)})

ducks.hits.insert_one({'resource': 'index',

 'date': datetime.datetime(2010, 1, 21, 8, 30, 0, 0)})

ducks.hits.insert_one({'resource': 'about',

 'date': datetime.datetime(2010, 1, 21, 9, 0, 0, 0)})

ducks.hits.insert_one({'resource': 'index',

 'date': datetime.datetime(2010, 1, 21, 9, 30, 0, 0)})

_ = ducks.hits.insert_one({'resource': 'index',

 'date': datetime.datetime(2010, 1, 22, 5, 0, 0, 0)})

In [109]:

Map-reduceMap-reduce
Afin de pouvoir lancer un job map-reduce, il faut écrire les fonctions map et reduce (en javascript!)

In [110]:

Map-reduceMap-reduce
Le reste est automatiquement géré par MongoDB

In [111]:

Out[111]: Collection(Database(MongoClient(host=['mongodb:27017'], document_class=dict, tz_aware=False, connect=True),

'duckburg'), 'hit_stats')

from bson.code import Code

map = Code('''function() {

 var key = {

 resource: this.resource,

 year: this.date.getFullYear(),

 month: this.date.getMonth(),

 day: this.date.getDate()

 };

 emit(key, {count: 1});

}''')

reduce = Code('''function(key, values) {

 var sum = 0;

 values.forEach(function(value) {

 sum += value['count'];

 });

 return {count: sum};

}''')

result = ducks.hits.map_reduce(map, reduce, 'hit_stats')

result

In [112]:

In []:

{'_id': {'resource': 'about', 'year': 2010.0, 'month': 0.0, 'day': 20.0}, 'value': {'count': 1.0}}

{'_id': {'resource': 'about', 'year': 2010.0, 'month': 0.0, 'day': 21.0}, 'value': {'count': 2.0}}

{'_id': {'resource': 'index', 'year': 2010.0, 'month': 0.0, 'day': 20.0}, 'value': {'count': 3.0}}

{'_id': {'resource': 'index', 'year': 2010.0, 'month': 0.0, 'day': 21.0}, 'value': {'count': 2.0}}

{'_id': {'resource': 'index', 'year': 2010.0, 'month': 0.0, 'day': 22.0}, 'value': {'count': 1.0}}

for doc in result.find():

 print(doc)

