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Abstract. It is well known that Bloom Filters have a performance
essentially independent of the data used to query the filters themselves,
but this is no more true when considering Learned Bloom Filters. In this
work we analyze how the performance of such learned data structures is
impacted by the classifier chosen to build the filter and by the complexity
of the dataset used in the training phase. Such analysis, which has not been
proposed so far in the literature, involves the key performance indicators
of space efficiency, false positive rate, and reject time. By screening
various implementations of Learned Bloom Filters, our experimental
study highlights that only one of these implementations exhibits higher
robustness to classifier performance and to noisy data, and that only two
families of classifiers have desirable properties in relation to the previous
performance indicators.

Keywords: Learned Bloom filters - Data complexity - Learned data
structures.

1 Introduction

Recent studies have highlighted how the impact of machine learning has the
potential to change the way we design and analyze data structures. Indeed, the
resulting research area of Learned Data Structures has had a well documented
impact on a broad and strategic domain such as that of Data Bases, and an
analogous impact can be expected for Network Management [25] and Computa-
tional Biology [I3]. More in general, as well argued in [14], this novel way to use
machine learning has the potential to change how Data Systems are designed.
The common theme to this new approach is that of training a Classifier [I0] or a
Regression Model [I1] on the input data. Then such a learned model is used as an
“oracle” that a given “classical” data structure can use in order to answer queries
with improved performance (usually w.r.t. time). In this work, we focus on Bloom
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Filters (BFs) [I] which have also received attention in the realm of Learned Data
Structures. Such an attention is quite natural, due to the fundamental nature
and pervasive use of BFs. Indeed, many variants and alternatives for these filters
have been already proposed, prior to the Learned versions [2].

Problem Statement, Performance of a Bloom Filter and a Learned Version.
Bloom Filters (BF) solve the Approximate Set Membership problem, defined
as follows: having fixed a universe U and a set of keys S C U, for any given
x € U, find out whether or not « € S. False negatives, that is negative answers
when « € S, are not allowed. On the other hand, we can have false positives
(i.e., elements in U\S wrongly decreed as keys), albeit their fraction (termed
henceforth false positive rate, FPR for short) should be bounded by a given e. The
key parameters of any data structure solving the approximate set membership
problem are: (i) the FPR ¢; (ii) the total space needed by the data structure; and
(iii) the reject time, defined as the expected time for rejecting a non-key.

Kraska et al. [T5] have proposed a Learned version of Bloom Filters (LBF) in
which a suitably trained binary classifier is introduced with the aim of reducing
space occupancy w.r.t. a classical BF, having fixed the FPR. Such classifier is
initially queried to predict the set membership, with a fallback to a standard BF
in order to avoid false negatives. Mitzenmacher [20] has provided a mathematical
analysis for those filters and novel LBF variants, together with a discussion of
their pros/cons. Additional models have been introduced recently [7123].

The Central Role of Classifier Selection. Apart from an initial investigation
[8IT2], the problem of suitably choosing the classifier to be used to build a specific
LBF has not been fully addressed so far. Moreover, the role that the complexity
of a dataset plays in guiding the practical choice of a Learned Data Structure for
that dataset has been considered to some extent for Learned Indexes only [I8].

Paper contribution. Given the above State of the Art, our aim is to provide
a methodology and the associated software to guide the design, analysis and
deployment of Learned Boom Filters with respect to given constraints about
their space efficiency, false positive rate, and reject time. In order to achieve these
goals, our contributions are the following.

(1) We revisit BFs in their original and learned versions (Sect. [2), detailing
the hyperparameters to be tuned within the related training procedures.

(2) We propose a methodology, which can guide both developers and users
of LBFs in their design choices (Sect. , to study the interplay among:
(a) the parameters indicating how a filter, learned or classic, performs on an
input dataset; (b) the classifier used to build the LBF; (c) the classification
complexity of the dataset.

(3) Software platform and findings: we provide a software platform imple-
menting the above-mentioned methodology, along with important insights
about the overall applicabity of LBF, as detailed next.
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(a) We address the problem of choosing the most appropriate classifier in
order to design a LBF having as only prior knowledge the total space
budget, the data complexity, the list of available classifiers, and their
inference time. A related problem has been considered in [20] with
two important differences: the filter is fixed, and the obtained results
supply only partial answers, leading to the suggestion of an experimental
methodology, which has not been validated and it is not supported
by software. Our experiments (Sect. shows that among the many
classifiers used in this research, only two classifiers are worth of attention.
Remarkably, none of the two has been considered before for LBFs (Sect. [5).

(b) As a further contribution, we assess how the performance of State-of-
the-Art BFs is affected by datasets of increasing complexity (Sect. [5)). In
particular, we identify a variant of Learned Bloom Filters more robust
to variations of data complexity and classifier performance.

(c) We also provide user guidelines on how to use State-of-the-Art LBF
solutions (Sect. [6]).

2 Bloom Filters and Learned Bloom filters

A Bloom Filter [I] is a data structure solving the Approximate Set Membership
problem defined in the Introduction, based on a boolean array v of m entries and
on k hash functions hq, ..., hy mapping U to {1,...,m}. These functions are
usually assumed to be k-wise independent [3124], although much less demanding
schemes work well in practice [I]. A BF is built by initializing all the entries of
v to zero, subsequently considering all keys « € S and setting vp,;(z) < 1 for
each j € {1,...k}; a location can be set to 1 several times, but only the first
change has an effect. Once the filter has been built, any « € U is tested against
membership in S by evaluating the entry vy, (), for each hash function h;: x is
classified as a key if all tested entries are equal to 1, and rejected (a shorthand
for saying that it is classified as a non-key) otherwise. False positives might arise
because of hash collisions, and the corresponding rate € is inversely bound to
the array size m. More precisely, equation (21) in [I] connects reject time, space
occupancy and FPR, so that one can choose the configuration of the filter: for
instance, given the available space, one can derive the reject time that minimizes
the FPR. Analogous trade-offs [220] can be used to tune the hyperparameters of
a BF (namely, m and k) in order to drive the inference process towards the most
space-conscious solution. In particular, fixed an FPR € and a number n = |S| of
keys, a BF ensuring optimal reject time requires an array of

m = 1.44nlog(1/¢) bits. (1)

A Learned Bloom Filter [I5] is a data structure simulating a BF to reduce its
resource demand or its FPR by leveraging a classifier. The main components of
a LBF are a classifier C : U — [0,1] and a BF F, defined as it follows.

1. Using supervised machine learning techniques, C' is induced from a labeled
dataset D made of items («,y, ), where y, equals 1 if & € S and 0 otherwise.
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In other words, C' is trained to classify keys in S so that the higher is C(),
the more likely & € S. A binary prediction is ensured by thresholding using
7 € [0, 1], i.e. classifying € U as a key if and only if C(x) > 7.

2. Of course, nothing prevents us from having a set of false negatives {x €
S|C(x) < 7} # 0, thus a backup (classical) Bloom Filter F for this set is
built. Summing up, & € U is predicted to be a key if C(x) > 7, or C(x) < T
and F' does not reject . In all other cases, @ is rejected.

It is important to underline that the FPR of a classical BF is essentially
independent of the distribution of data used to query it. This is no more true for
a LBF [20], in which such rate should be estimated from a query set S C U\S. To
remark such difference, one commonly refers to the empirical FPR of a learned
filter, which is computed as € = ¢, + (1 — €, )ep, where:

1. e, = |{x € S|C(x) > 7}|/[S] is the analogous empirical FPR of the classifier
C on S, and
2. ep is the false positive rate of the backup BF.

Hence, having fixed a target value for €, the backup filter can be built setting
er = (e — €;)/(1 — €;), under the obvious constraint e, < e. Within the learned
setting, the three key factors of the filter are connected (and influenced) by
the choice of 7. However, due to the dependency on the query set distribution,
reliably estimating the FPR of a LBFs is no longer immediate, as pointed out
in [20], that also suggests an experimental methodology to assess it. The latter is
part of the evaluation setting proposed in this paper.

Here below we outline the main features of the LBF variants which we have
considered. With the exception of the one in [23], for which the software is neither
public nor available from the authors, our selection is State of the Art.

Sandwiched LBFs [20]. The Sandwiched variant of LBFs (SLBF for brevity) is
based on the idea that space efficiency can be optimized by filtering out non-keys
before querying the classifier C', requiring as consequence a smaller backup filter
F'. More in detail, a BF I for S is initially built and used as a first processing
step. All the elements of S that are not rejected by I are then used to build
a LBF as described earlier. The SLBF immediately rejects an element x € U
if I rejects it, otherwise the answer for x of the subsequent LBF is returned.
The empirical FPR of the SLBF is € = ¢; (Gr +(1- ET)GF), where €7 is the
FPR of I. Here, fixed the desired ¢, the corresponding FPR to consctruct I is
er = (¢/e;)(1 — FN/n), where FN is the number of false negatives of C. Also in
this case, the classifier accuracy affects the FPR, space and reject time, with the
constraint €(1 — FN/n) <e, <1—-FN/n.

Adaptive LBFs [7]. Adaptive LBFs (ADA-BF) represent an extension of LBF,
partioning the training instances x into into g groups, according to their classifi-
cation score C(z). Then, the same number of hash functions the backup filter
of an LBF would use are partitioned across groups, and the membership for
the instances belonging to a given group is tested only using the hash functions
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assigned to it. Even for ADA-BF the expected FPR can only be estimated
empirically, but in this case the formula is rather complicated: the interested
reader can refer to [7]. We retained here the best performing variant of ADA-BF.

Hyperparameters. The Learned Bloom Filters described above have some parame-
ters to be tuned. Namely, the threshold 7 for LBF and SLBF, and two parameters
g and ¢ for ADA-BF, representing the number of groups in which the classifier
score interval is divided into, and the proportion of non-keys scores falling in
two consecutive groups. The details on the tuning of these hyperparameters are
discussed in Sect.

3 Experimental Methodology

In this section we present the methodology which we adopt in order to design
and analyse LBFs with regard to the inherent complexity of input data to be
classified, subsumed as follows. The starting point is a dataset, either real-world
or generated through a procedure suitable for synthesize data in function of some
classification complexity metrics. Overall, the pipeline adopted is the following:
collect/generate data; induce a classifier from data and estimate its empirical
FPR; construct a Learned Bloom Filter exploiting the learnt classifier, and in
turn estimate its empirical FPR. The following sections review the considered
classifier families and describe in depth the adopted data generation procedure.

3.1 A Representative Set of Binary Classifiers

Starting from an initial list of classifiers—without presuming to be exhaustive—we
performed a set of preliminary experiments, from which we received indications
about the families of classifiers to be further analyzed, based on their time
performance/space requirements trade—oﬂﬂ Namely, from the initial list, we
have removed the following classifiers: Logistic Regression [5], Naive Bayes [9]
and Recurrent Neural Networks [4], due to their poor trade-off performance,
confirming the results of a preliminary study [I2]. The remaining ones are
briefly described in the following paragraphs. Since our evaluation considers
both balanced and unbalanced classification problems, we also detail how their
inference is managed in an unbalanced context. The hyperparameters of the
corresponding learning algorithms are distinguished between regular and key
hyperparameters, the latter affecting the space occupancy of the classifier. The
model selection phase only involves non-key hyperparameters, while different
configurations for key hyperparameters are analysed in dedicated experiments
aiming at studying the interplay among FPR, space occupancy and reject time
of Learned Bloom Filters.

3 The experiments and data about this preliminary part are available upon request.
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3.2 Measures of Classification Complexity and a Related Data
Generation Procedure

In order to evaluate dataset complexity, several measures are available (see [16]
for a survey). We specifically focus on measures suitable for binary classification
tasks, and hereafter we use the notation “class ¢’, i = 1,2, to refer to one of
the two classes. A preliminary analysis highlighted that some of the measures
in [I6] were insensitive across a variety of synthetic data, as happened, e.g., with
the F1, T2, or T8 measures, or needed an excessive amount of RAM (such as
network- or neighborhood-based measures, like LSC and N1). As a consequence,
we selected the feature-based measure F1v and the class-imbalance measure C2,
Both measures are in € [0, 1], and the higher the value, the higher the complexity.

Data generation procedure. In order to generate a binary classification dataset
of size N with a given level of complexity, n; positive and ny = [pn1] negative
instances (with N = ny 4+ ns), we proceed as follows. Let D = {x;,...xy} C R?
be the set of samples, with each sample x; having ¢ features z;1,..., i, and a
binary label y; € {0,1}. The N samples are drawn from a multivariate normal
distribution N'(0, X)), with ¥ = ~I, (where v > 0 and I, denotes the ¢ X ¢
identity matrix). In our experiments we set v = 5 so as to have enough data
spread, reminding that this value however does not affect the data complexity.
Without loss of generality, we consider the case ¢ = 2. To determine the classes
of positive and negative samples, the parabola x5 — ax? = 0 is considered, with
a > 0: a point &; = (241, 2;2) is positive (y; = 1) if z;0 — az?; > 0, negative
otherwise (y; = 0). This choice allows us to control the linear separability of
positive and negative classes by varying the parameter a: the closer a to 0, the
more linear the separation boundary. As a consequence, a controls the problem
complexity for a linear classifier, and p, instead, controls the data imbalance.
Further, to vary the data complexity even for nonlinear classifiers, labels are
permuted with different levels of noise: we flip the label of a fraction r of positive
samples, selected uniformly and at random, with an equal number on randomly
selected negatives.

4 Experiments

4.1 Data

Domain-Specific Data. We use a URL dataset and a DNA dictionary. The first
has been already studied as a benchmark for Learned Bloom Filters [7], and
the authors of this research kindly provided us the dataset. It contains 485730
URLs described by 17 lexical features: 80002 URLs are malicious (and they
constitute our key set), while the remaining ones are benign. The DNA dictionary
regards the storage and retrieval of k-mers (i.e., strings of length k appearing
in a given genome, whose spectrum is the dictionary of k-mers) [21I], and was
directly generated by us. More precisely, it refers to the human chromosome
14, containing n = 49906253 14-mers [2I] constituting the set of our keys. As
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non-keys, we uniformly generate other n 14-mers from the 4'* possible strings on
the alphabet {A, T, C, G}. We point out that no sensible information is contained
in these datasets. We study them because they represent two extreme cases of
classification complexity: the URL dataset is easy (F1v=0.08172, C2=0.62040),
the DNA data is hard (F1v=0.99972, C2=0).

Synthetic Data. Using the technique described in Sect. we generate two
categories of synthetic data, each attempting to reproduce the complexity of one
of the domain-specific data. The first category has nearly the same C2 complexity
of the URL dataset, i.e., it is unbalanced, with n; = 10° and p = 5. The second
one has the same C2 complexity of the DNA dataset, i.e., it is balanced, with
ny = 10° and p = 1. The choice of ny allows to have a number of keys similar to
that in the URL data, and at the same time to reduce the number of experiments
planned. Indeed, both balanced and unbalanced categories contain nine datasets,
exhibiting increasing levels of F1v complexity (see Table . Specifically, all
possible combinations of parameters a € {0.01,0.1,1} and r € {0,0.1,0.25} are
used. The corresponding complexity estimations are consistent, as F1v increases
with a and r and C2 reflects the complexities of the URL and DNA datasets
respectively in the unbalanced and balanced case.

Table 1. F1v complexity measure of the synthetic data. The C2 index is equal to 0.0
and 0.615, respectively, in the balanced and unbalanced case.

a 001 01 1 0.01 01 1 0.01 01 1
T 0 0 0 0.1 01 01 0.25 025 0.25

Balanced [0.127 0.181 0.306 0.268 0.327 0.459 0.571 0.619 0.718
Unbalanced|0.129 0.202 0.360 0.187 0.269 0.433 0.308 0.399 0.563

4.2 Model Selection

Classifiers. The classifier generalization ability is assessed independently of the
filter employing it, via a 3-fold cross validation (CV) procedure; performance is
measured in terms of the area under (i) the ROC curve (AUC), and of (ii) the
precision-recall curve (AUPRC), averaged across folds. However, for synthetic
data, we report only the AUPRC results, since AUC results showed very similar
trends and no enough room is available. The key hyperparameters for a given
classifier are set in order not to exhaust all available space budget, while non-key
hyperparameters are selected through a grid search using an inner 3-fold CV on
the current training set, retaining the best configuration. When possible, for each
classifier, we selected different hyperparameter configurations yielding models
of different complexity, from simpler to more complex ones. Finally, for a fair
comparison, the key hyperparameters for NNs are selected so as to yield three
models nearly having the same size of the SVM and of the two RFs models.
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Table 2. Space budget in Mbits adopted on the various datasets. € is the false positive
rate, n is the number of keys in the dataset.

Data € Budget (Mbits) n
Synth 0.05,0.01 0.62, 0.96 10°
URL |0.01,0.005,0.001, 0.0005, 0.0001 0.76,0.88,1.15,1.26,1.53 8-10*
DNA [0.01,0.005,0.001, 0.0005, 0.0001|477.46, 549.32, 716.19, 788.06, 954.92|4.99 - 107

Summarizing: i) SVM has no key hyperparameters; ii) for RF, we used ¢ = 10, 20
(URL, synthetic) and ¢ = 10,100 (DNA); iii) for NNs, we considered NN-25,
NN-150, 50 and NN-200, 75 (synthetic dataset); NN-7, NN-150, 35 and NN-175, 70
(URL dataset); NN-7, NN-125,50, NN-500, 150 (DNA dataset).

Learned Bloom Filters. The Bloom Filter variants under study are evaluated
under the setting proposed in [7], that is: 1) train the classifiers on all keys and
30% of non-keys, and query the filter using remaining 70% of non-keys to compute
the empirical FPR; 2) fix an overall memory budget of m bits for each filter, and
compare them in terms of their empirical FPR e. Each filter variant is trained
leveraging in turn each of the considered classifiers. The budget m is related to
the desired (expected) € of a classical Bloom Filter, according to . Being the
space budget directly influenced by the key set size n, we adopt a setting tailored
on each dataset. Concerning synthetic data, as we generate numerous datasets,
for each of them we only test two different choices for the space budget m: namely,
those yielding € € {0.05,0.01} for the classical Bloom Filter. On real datasets, we
test five space budgets corresponding to € € {0.01,0.005,0.001,0.0005,0.0001}.
Table[2] contains the resulting budget configurations for all the considered datasets.
To build the learned Bloom Filters variants, the hyperparameters have been
selected via grid search on the training data, optimizing with respect to the FPR,
according to the following setting: (a) 15 different values for threshold 7, and
(b) the ranges [3,15], and [1, 5] for hyperparameters g and ¢, respectively (cfr.
Sect. . Importantly, the latter choice includes and extends the configurations
suggested in the original paper [6], namely, [8,12] for g and [1.6,2.5] for €.

5 Results and Discussion

As evident from Sect. 2] the classifier can be interpreted as an oracle for a
learned BF, where the better the oracle, the better the related filter, i.e., its
FPR once fixed the space budget. Accordingly, it is of interest to evaluate
the performance of classifiers. All classifiers described in Sect. have been
tested on the datasets described in Sect. [I.I} with the configuration described in
Sect. [:2] Figure[I]depicts the performance of classifiers on synthetic and real data.
However, it is central here to emphasize that the interpretation of such results
is somewhat different than what one would do in a standard machine learning
setting. Indeed, we have a space budget for the entire filter, and the classifier
must discriminate well keys and non-keys, while being substantially succinct
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with regard to the space budget of the data structure. Such a scenario implicitly
imposes a performance/space trade-off: hypothetically, we might have a perfect
classifier using less space than the budget, and on the other extreme, a poor
classifier exceeding the space budget. Surprisingly, from the behaviour of classifiers
it emerges a crisp separation of the data in terms of complexity (cfr. Table ,
that corresponds to datasets easy to classify (roughly Fiv < 0.35) and hard (F1v
> 0.35) to classify. Here we address the question of how to choose a classifier
to build the filter upon, based only on the knowledge of space budget and data
classification complexity/classifier performance. On synthetic and URL data (cfr.
Fig. , more complex classifiers perform just slightly better than the simpler ones,
likely due to the low data complexity in these cases. At the same time, they require
a sensibly higher fraction of the space budget (cfr. Table , and it is thereby
natural to retain in those cases only the smallest /simplest variants, namely: RF-10
and NN-25 (synthetic) and NN-7 (URL), in addition to SVM. Conversely, in
DNA experiments, more complex classifiers substantially outperform the simpler
counterparts, coherently with the fact that this classification problem is much
harder. Since the available space budget is higher in this case, all classifiers have
been retained in the subsequent filter evaluation.

Learned Filters Performance w.r.t. Data Classification Complexity

FEasy datasets. Figure [2] reports the FPR results of learned Bloom Filters on
balanced and unbalanced synthetic data, respectively, whereas Fig. [3| depicts the
results on URL and DNA data. According to the definition provided above (F1v
around 0.35 or smaller), easy data can be associated to the three/four leftmost
configurations on the z-axis in Fig. [] of synthetic and to URL data. In these
cases, we observe results coherent with the literature, where ADA-BF slightly
outperforms the other competitors [7], and when using RF-10 as classifier lower
FPRs are obtained with regard to the classical BF. Notwithstanding, it clearly
emerges that such a classifier is not the best choice, underlining all the doubts
about a selection not motivated in the original studies. For instance, on URL
data there are at least two classifiers yielding a lower FPR in most cases and

O swM O svM
O RF-10 O RF-10
@ RF-20 B RF-100
= NN7
m NN-12550
= NN-500,150

= NN-7
W NN-150.35
- NN-175.70

)
o
@
o
™~
=
©
o

05 06 07 08 09

0.5

Fig. 1. Performance averaged across folds of compared classifiers on synthetic (a-
balanced, b-unbalanced), URL (c) and DNA data (d). On synthetic data, bars are
grouped by dataset, in turn denoted by a couple (a, 7).
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Fig. 2. False positive rates of learned filters attained on balanced (a, b) and unbalanced
(¢, d) synthetic datasets. On the horizontal axis, labels X Y denote the dataset obtained
when using a = X and r = Y. The blue dotted line corresponds to the empirical false
positive rate of the classical BF in that setting. Two space budgets m are tested, ensuring
that € = 0.05 ((a), (¢)) and € = 0.01 ((b), (d)) for the classical BF.

for all filter variants (SVM and NN-7). In additon, SVMs are much faster. NN-7
(or NN-25 for synthetic data) remains the best choice even when the separation
boundary becomes less linear (a > 0.01), and filters induced by SVMs become
less effective or even worse than the baseline BF.

Hard datasets. Our experiments show a novel scenario with the increase of data
complexity, i.e., when moving towards right on the horizontal axis in Fig. [2, or
when considering DNA data. We observe that the performance of the filters drops
more and more, in line with the performance decay of the corresponding classifiers,
and unexpectedly the drop is faster in ADA-BF (and LBF) w.r.t. SLBF. This
happens for instance on all synthetic data having r > 0 (noise injection). We
say unexpectedly since we have an inversion of the trend also reported in the
literature, where usually ADA-BF outperforms SLBF (which in turn improves
LBF). Indeed, SLBFs here exhibit behaviours more robust to noise, which are
likely due to a reduced dependency on the classifier for SLBF, yielded by the
usage of the initial Bloom Filter. Such a filter allows the classifier to be queried
only on a subset of the data. Noteworthy is the behavior of filters when using
RFs in this setting: their FPR strongly increases, and potential explanations are
the excessive score discretization (having 10 trees we have only 11 distinct scores
for all queries), and the space occupancy is larger (limiting the space that can
be assigned to initial/backup filters). These results find a particularly relevant
confirmation on the very hard, real-world, large, and novel DNA dataset. Here,
surprisingly, the LBF cannot attain any improvement with regard to the baseline
BF, differently from SLBF and ADA-BF. A potential cause can reside in the
worse performance achieved by classifiers on this hard dataset, compared to those
obtained on synthetic and URL data, and in a too marked dependency of LBF
on the classifier performance, mitigated instead in the other two filter variants
by the usage of the initial BF (SLBF) and by the fine-grained classifier score
partition (ADA-BF). SLBF outperforms both LBF and baseline of one order
of magnitude in FPR with the same space amount, and ADA-BF when using
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Fig. 3. Empirical false positive rate of LBF (left), SLEFB (central), and ADA-BF (right)
filters on URL data (first row) and DNA data (second row). On the horizontal axis the
different budgets configurations. Dotted blue line represents the baseline Bloom Filter.

weaker classifiers and when a higher budget is available. This is likely due to
overfitting of ADA-BF in partitioning the classifier codomain when the classifier
performance is not excellent (or similarly when the data complexity is high), as
with DNA data. Differently from hard synthetic data, where the key set was
smaller (as consequently was the space budget), here the classifiers leading to the
best FPR are the most complex, in particular NN-500,150 and NN-125,50 (which
are also the top performing ones—they could be even further compressed [19]).
In other words, on hard datasets simple classifiers are useless or even deleterious
(SVM never improve the baseline, and in some cases they are even worse).

Reject time. The results concerning reject time analysis are provided in full
in [I7]. Here we bring to light that learned BF are sometimes faster than the
baseline, which in principle is not expected, since they have to query a classifier
in addition to a classical BF. Our interpretation is that it can happen for two
main reasons: 1) the classifier is very fast and effective, allowing in most cases to
skip querying the backup filter; 2) the key set is very large and it requires a large
baseline BF, whereas a good classifier sensibly drops the dimension of backup
filters, making their invocation much faster. See for instance the case of DNA
data, where most learned filters are faster than the baseline, with most classifiers.

6 Guidelines

We summarize here our findings about the configuration of learned Bloom Filters
exploiting the prior knowledge of data complexity and available space budget.
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Dataset Complexity and Classifier Choice. We have roughly distinguished two
main categories of data based on their complexity and the related behaviour of
filters: easy dataset, having F1v < 0.35, and hard dataset, having Fiv > 0.35.
The dataset complexity emerged as a central discriminant for the filter setup.
Indeed, when dealing with easy datasets, the choice of the classifier becomes
quite easy, and, independently of the space budget, it is always more convenient
to select simple classifiers. Specifically, our experiments designate linear SVMs
as best choice for the easiest datasets (those having almost linear separation
boundary), and the smallest/simplest NNs for the more complex data in this
category. In addition, the classifier inference time plays an important role for this
data category: although a fastest classifier does not necessarily implies a lower
reject time of the corresponding filter (see [I7]), when the average performance
of two classifiers is close, then the inference time can be a discriminant feature
for the classifier selection. But only in this case: see for instance the URL results,
where the RF-10 performed just slightly better than SVMs, but although having
an inference time one order of magnitude higher, the induced LBF has a lower
reject time (see [I7] for the relative discussion.) Surprisingly, this analysis has
been overlooked in the literature. For instance, benchmark URL data falls in this
category, but all previous experimental studies regarding learned BF on this data
do not consider neither SVMs, nor NNs.

For hard datasets instead, the space budget is central for the classifier choice.
Indeed, within the budget given by , on synthetic datasets, having a relative
small key set and accordingly a lower budget, the choice is almost forced towards
small although inaccurate classifiers, being the larger ones too demanding for
the available budget. In particular, SVM is to be excluded due to the increased
difficulty w.r.t. that of URL data, and for the remaining classifiers, we note that
they behave very similarly (Fig. . Thus the most succinct ones, namely the
smallest NN, are to be preferred. As opposite, when the space budget increases, as
it happens for DNA data, our findings suggest to learn more accurate classifiers,
even if this requires the usage of a considerable budget fraction. Indeed, the gain
induced by higher classification abilities allows to save space when constructing
the backup filter, to have consequently a smaller reject time, as well as an overall
more efficient structure (cfr. Sect. [f). This is also motivated by the fact that to
accurately train complex classifiers the sample size must be large enough [22].

Learned Bloom Filters Choice Our experiments reveal three main trends: 1) on
benchmark data, that is those used also in the literature so far (URL data),
ADA-BF is confirmed as more effective variant in terms of FPR, having fixed the
budget; 2) however, its reject time is always and largely the highest one (see [17]),
thus suggesting to exclude its usage in applications where fast responses are
necessary (e.g., real-time applications). This subject includes also the classifier
choice, since the most effective filters are in most cases induced by NNs, but
they are also slower in terms of reject time of the counterparts induced by
faster classifiers, and accordingly a trade-off FPR/reject time must be carefully
investigated; 3) SLBF is the filter most robust to data noise, and the only one
able to benefit more even from classifier with poor performance (cfr. synthetic
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noisy and DNA results). As a consequence, SBLF is clearly the filter to choose
in presence of very complex data. In particular, the point 3) is a new and quite
unforeseen behaviour, emerged only thanks to the study of data complexity and
relative noise injection procedure designed in this study, and which to some
extent changes the ranking of most effective learned BF in practice, since most
real datasets are typically characterized by noise.

7 Conclusions and Future Developments

We have proposed an experimental methodology that can guide in the design
and validation of learned Bloom Filters. The key point is to base the choice of
the used classifier on the space budget of the entire data structure as well as
the classification complexity of the input dataset. We empirically detected two
class of problems, easy and hard, and confirmed (to some extent) the results on
the former one, which is the only scenario considered so far in the Literature,
while the unexplored hard scenario revealed novel trends, and almost inverted
the ranking of LBFs emerged in the easy case. A potential limitation of such
results is that they might be dependent on the considered data; nonetheless, this
is somehow inevitable due to the nature of Learned Data Structures. In addition,
Learned Bloom Filters can be quite sensitive to the input query distribution. Yet,
no study is available to quantify this aspect, and our methodology can be easily
extended in this sense.
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