Laurea magistrale in Informatica (Università degli Studi di Milano)


Questo insegnamento introduce le principali tecniche legate all'analisi di grosse moli di dati.

Avvisi

Lingua

Le lezioni sono in italiano.

Orari del corso

Le lezioni si svolgeranno presso il dipartimento di Informatica, secondo il seguente orario:

Giorno Ora Luogo
martedì 16:30 - 18:30 14:30 - 16:30 aula V8 aula Alfa Aula 207
mercoledì 13:30 - 15:30 aula 402 aula Magna

Eventuali variazioni rispetto al calendario pianificato verranno comunicate in aula e pubblicizzate nel paragrafo Avvisi di questa pagina.

Ricevimento studenti

Su appuntamento, stanza 5015 del Dipartimento di Informatica. È possibile contattare il docente tramite posta elettronica, avendo cura di leggere preventivamente la guida predisposta dal Prof. Sebastiano Vigna e di specificare chiaramente nell'oggetto del messaggio il nome dell'insegnamento e l'anno accademico. In particolare, si invitano gli studenti a usare sempre come mittente l'indirizzo fornito loro dall'Ateneo (basato cioè sul dominio studenti.unimi.it) firmando con nome, cognome e matricola e ricordando che i tempi di risposta possono variare in funzione degli impegni del docente.

Materiale didattico

La parte teorica del corso è basata sul seguente libro di testo (indicato come RU nel calendario delle lezioni): Anand Rajaraman and Jeff Ullman, Mining of Massive Datasets, disponibile sia come PDF gratuitamente scaricabile che pubblicato in versione cartacea da Cambridge University Press (ISBN:9781107015357). Per le parti pratiche si consiglia la lettura di Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia, Learning Spark. Lightning-Fast Big Data Analysis, O'Reilly, 2015 (ISBN:978-1-449-35862-4) e di Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills, Advanced Analytics with Spark. Patterns for Learning from Data at Scale, O'Reilly, 2015 (ISBN:978-1-491-91276-8)

Per la parte sui file system distribuiti e il paradigma MapReduce si consiglia, oltre al capitolo 2 del libro di testo, la lettura del tutorial su Hadoop predisposto da Yahoo!

Alcuni laboratori fanno riferimento al programma edX Data Science and Engineering with Spark.

Programma

Il programma riguarda gli argomenti dettagliati nel calendario delle lezioni, che corrisponde al materiale trattato sul libro di testo, oltre che sui restanti documenti elencati tra il materiale didattico.

Calendario delle lezioni

Loading...

Modalità d'esame

L'esame consiste in una prova orale.

Appelli d'esame

Sessione Data
gennaio 16/01/2019
febbraio 11/02/2019
giugno 11/06/2019
luglio 02/07/2019
settembre 17/09/2019
gennaio 16/01/2020